Yazar "Mostafa Mohamed Okasha" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A comparative study of two-phase flow of an infusion of gyrotactic microorganisms and dust particles in trihybrid nanofluid with melting phenomena and Soret–Dufour effects(Springer Science and Business Media LLC, 2024-12-27) Munawar Abbas; Mostafa Mohamed Okasha; Nargiza Kamolova; Ali Hasan Ali; Ibrahim Mahariq; Ali Akgül; Ahmed M. GalalBackground: This investigation's main goal is to examine the impacts of Soret and Dufour on Marangoni convective flow of dusty trihybrid nanofluid over a Plate containing gyrotactic microorganisms, heat generation, and melting processes. A trihybrid nanofluid containing nanoparticles of Magnesium oxide MgO, Titanium dioxide TiO2, and Silver Ag in a water-based fluid. This proposed model is used to contrast the activity of dual well-known trihybrid nanofluid models for thermal conductivity, the Hamilton–Crosser model and the Yamada-Ota model. Methods: An appropriate similarity variable is utilized to reduce governing partial differential equations to couple nonlinear ordinary differential equations. After that the system of equations is numerically solved using the effective Bvp4c Method. Applications: Especially in high-performance cooling applications like electronics and aeronautical engineering, this comprehensive study could be very helpful in enhancing thermal management systems. With regard to the introduction of bio-convection brought about by the presence of gyrotactic bacteria, this model can be applied to advanced bio-engineering applications such as bioreactors and medical equipment. Understanding the behavior of these complex fluids under gradients in concentration and Soret–Dufour effects may also lead to improvements in the production and processing of materials, where precise temperature and concentration controls are critical. Results: The temperature and velocity distributions of the dusty ternary hybrid nanofluid are shown to be predominant with higher melting parameters; while, the concentration and microorganism distributions show the opposite pattern.Öğe Characteristics of elastic deformation on Boger hybrid nanofluid using modified Hamilton–Crosser model: a local thermal nonequilibrium model(Springer Science and Business Media LLC, 2025-01-15) Mostafa Mohamed Okasha; Munawar Abbas; Muyassar Norberdiyeva; Dyana Aziz Bayz; Ibrahim Mahariq; Ansar Abbas; Ali Akgül; Ahmed M. GalalIn this investigation, elastic deformation characteristics on surface tension gradient flow of Boger hybrid fluid over a plate using modified Hamilton-Crosser Model are examined. The modeling takes into account the influence of local thermal nonequilibrium (LTNE). The expanded Cattaneo-Christov theory, which takes relaxation times into account, is the current theory for mass and heat transmission. Excellent heat transmission is offered by the energy equation-based LTNE model for both the liquid and solid phases. Therefore, in this work, two thermal distributions are used for both the liquid and solid phases. It can be applied to materials science to improve heat transmission procedures and nanotechnology, where accurate temperature control is essential for applications like electronic device cooling systems, microfluidic devices, and biomedical applications. Better modeling of complicated fluids in these systems is made possible by the addition of elastic deformation and LTNE, which enhances the systems' stability and efficiency, particularly under nonequilibrium heat conditions. The Bvp4c method is used to solve the model equation system numerically once the relevant similarity variables have condensed. To illustrate how different physical conditions affect the involved distributions, the findings are graphed. Results show that Boger fluid exhibits enhanced velocity at increasing solvent percent parameter values.