Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Khan, Noor Zeb" seçeneğine göre listele

Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Heat and Flow Control in Cavity with Cold Circular Cylinder Placed in Non-Newtonian Fluid by Performing Finite Element Simulations
    (Mdpi, 2022) Bilal, Sardar; Khan, Noor Zeb; Shah, Imtiaz Ali; Awrejcewicz, Jan; Akgul, Ali; Riaz, Muhammad Bilal
    A study on strategies regarding advancement in heat transfer characteristics in two-dimensional closed domains by placing cold cylinders is conducted. This effort is undertaken due to the fact that active and passive control in heat transmission is connected with provision of temperature differences at different locations of enclosures. Based on the experiments, researchers have concluded that placement of cold cylinder in non-uniformly distributed heat in a cavity is the most effective technique to enrich heat transfer rate, along with reducing the the waste of extra heat generation in processes such as polymer and aero dynamical extrusion, glass cooling, refrigeration, heating and cooling systems. Thus, the prime goal of this work is to outline heat and flow characteristics of non-linear fluid occupied in a square enclosure with adjustment of the cold cylinder. Heat transfer attributes are incorporated by accounting buoyancy forces and forming coupling of molecular diffusion of fluid within the flow domain. Formulation of the problem in dimensionless form is attained by encapsulating the aspects of natural convection in view of principal partial differential equations. Parametric study for governing expressions is computed numerically with the finite element method based on COMSOL Multiphysics version 5.6. Quadric interpolating functions are used to obtain information about velocity and temperature on nodes in elements. Hybrid meshing is manifested for discretization of the domain into rectangular and triangular elements. For the optimized variation in flow structures, prospective parameters are varied from 0.5 <= n <= 1.5, 5 <= Pr <= 35 and 10(2) <= Ra <= 10(6). The achieved results are projected graphically through streamlines, isotherms, and local and average Nusselt numbers. Tabular data for kinetic energy and wall heat flux are also calculated. It is inferred through the analysis that, with uplift in the Rayleigh number ( Ra) elevation in the magnitude of kinetic energy and convective heat transfer arises, whereas the reverse pattern is depicted versus the power-law index ( n)
  • [ X ]
    Öğe
    Mixed convective thermal transport in a lid-driven square enclosure with square obstacle
    (Elsevier, 2023) Khan, Noor Zeb; Mahmood, Rashid; Bilal, Sardar; Akgul, Ali; Abdullaev, Sherzod; Mahmoud, Emad E.; Yahia, Ibrahim S.
    The prime motive of this disquisition is to scrutinize simultaneous aspects of external forcing mechanism and internal volumetric forces on non-Newtonian liquid filled in square enclo-sure. Inertially driven upper lid is assumed by providing constant magnitude of slip velocity whereas thermal equilibrium is disturbed by assuming uniform temperature at lower boundary and by keep-ing rest of walls as cold. To enhance thermal diffusion transport with in the flow domain cold as well as adiabatic temperature situation is provided. In view of velocity constraints all the extremities at no-slip except the upper wall which is moving with ULid. Formulation is attained in dimensional form initially and afterwards variables are used to convert constructed differential system into dimensionless representation. A numerical solution of leading formulation is sought through Galer-kin finite element discretization. Momentum and temperature equations are interpolated by quad-ratic polynomials whereas pressure distribution is approximated by linear interpolating function. Domain discretized version is evaluated in view of triangular and rectangular elements. Newton's scheme is employed to resolve the non-linearly discretized system and a matrix factorization based non-linear solver renowned as PARADISO is used. Validation of results is ascertained by forming agreement with existing studies. In addition, grid independence test is also performed to show credibility of performed computations. Stream lines and isothermal contours patterns are portrayed to evaluate variation in flow distributions. Kinetic energy and local heat flux for uniform and non-uniform heating situations are also divulged in graphical and tabular formats. Increase in Reynold number produces decrease in kinetic energy of fluid. Enhancement in Grashof number causes enrichment of thermal buoyancy forces due to which Nusselt number uplifts. Clock wise rotations increase against upsurge in magnitude of Reynold number which is evidenced form stream lines. Squeezing of secondary vortex against Prandtl number arises due to dominance of viscous forces.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
  • [ X ]
    Öğe
    Numerical Study of Natural Convection of Power Law Fluid in a Square Cavity Fitted with a Uniformly Heated T-Fin
    (Mdpi, 2022) Bilal, Sardar; Khan, Noor Zeb; Shah, Imtiaz Ali; Awrejcewicz, Jan; Akgul, Ali; Riaz, Muhammad Bilal
    Flow of a liquid in an enclosure with heat transfer has drawn special focus of researchers due to the abundant thermal engineering applications. So, the aim of present communication is to explore thermal characteristics of natural convective power-law liquid flow in a square enclosure rooted with a T-shaped fin. The formulation of the problem is executed in the form of partial differential expressions by incorporating the rheological relation of the power-law fluid. The lower wall of the enclosure along with the fin is uniformly heated and vertical walls are prescribed with cold temperature. For effective heat transfer within the cavity the upper boundary is considered thermally insulated. A finite element based commercial software known as COMSOL is used for simulations and discretization of differential equations and is executed incorporating a weak formulation. Domain discretization is performed by dividing it into triangular and rectangular elements at different refinement levels. A grid independence test is accomplished for quantities of engineering interest like local and average Nusselt numbers to attain accuracy and validity in results. Variation in the momentum and thermal distributions against pertinent parameters is analyzed through stream lines and isothermal contour plots. Measurement of the heat flux coefficient along with the calculation of kinetic energy against involved parameters is displayed through graphs and tables. After the comprehensive overview of attained results it is deduced that kinetic energy elevates against the upsurging magnitude of the Rayleigh number, whereas contrary behavior is encapsulated versus power-law index n. Elevation in the Nusselt number for the shear thinning case i.e., n=0.5 adheres as compared to Newtonian i.e., n=1 and shear thickening cases i.e., n=1.5. It is perceived that by the upsurging power-law index viscosity augmentations and circulation zones increases. Heat is transferred quickly against Rayleigh number (Ra) due to production of temperature difference in flow domain.
  • [ X ]
    Öğe
    Numerical study of the effect of aspect ratio on the entropy generation due to Rayleigh-Benard convection in 2D trapezoidal cavity
    (Springer, 2024) Bilal, Sardar; Khan, Noor Zeb; Akgul, Ali
    The investigation of entropic variations in the thermal transport mechanism produced by buoyantly driven temperature gradients has attracted significant attention because of excellent physical significance. Therefore, the prime consent to manipulate the current investigation is to explore the impact of change in the aspect ratio of the trapezoidal cavity in the optimization of the entropy phenomenon. After attaining motivation from its practical essence different entropies including thermal, viscous, and local are estimated. Additionally, global quantities such as average Bejan and Nusselt numbers calculated along with total entropy are measured against flow concerning parameters (aspect ratio (AR), Rayleigh number (Ra) and irreversibility ratio ( phi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} )). Numerical experiments are performed by implementing a finite element approach using open-source software renowned as COMSOL Multiphysics. Before the accomplishment of the outcomes, confirmation of the numerical technique is assured by establishing grid sensitivity testing. Comparison of results between present and previous studies is also demonstrated. A wide range of involved sundry parameters varying from 10 - 4 <= phi <= 10 - 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${10}<^>{-4}\le \phi \le {10}<^>{-2}$$\end{document} , 10 2 <= Ra <= 10 5 and 0.25 <= AR <= 0.75 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${10}<^>{2}\le {\text{Ra}}\le {10}<^>{5} \; {\text{and}} \; 0.25\le {\text{AR}}\le 0.75$$\end{document} are accounted. It is concluded that by escalating the aspect ratio from 0.50 to 0.75, the magnitude of the local entropy enhances from 3370 to 3424. It is revealed that the highest value of viscous entropy that is, 45, is achieved at Ra = 105 and by keeping the aspect ratio of enclosure equal to 0.75, whereas, the thermal entropy approaches 2 for the same situation of parameters. The magnitude of the average Bejan number reaches unity at AR = 0.5 and Ra = 105, whereas for low and high aspect ratios it depicts a magnitude less than 1 for the same Rayleigh number.
  • [ X ]
    Öğe
    Onset about non-isothermal flow of Williamson liquid over exponential surface by computing numerical simulation in perspective of Cattaneo Christov heat flux theory
    (Elsevier, 2022) Bilal, S.; Shah, M. Imtiaz; Khan, Noor Zeb; Akgul, Ali; Nisar, Kottakkaran Sooppy
    In view of increaing significance of non-isothermal flow of non-Newtonian fluids over exponential surfaces in numerous industrial and technological procedures such as film condensation, extrusion of plastic sheets, crystal growth, cooling process of metallic sheets, design of chemical processing equipment and various heat exchangers, and glass and polymer industries current disquisition is addressed. For comprehensive examination Williamson model expressing the attributes of shear thickening and thinning liquids is taken under consideration. The physical aspects of magnetic field applied in transverse direction to flow is also accounted. Heat transfer aspects are incorporated and analyzed by employing Cattaneo-Christov heat flux model. Mathematical formulation of problem is conceded in the form of PDE's by implementing boudary layer approach and later on converted into ODE's with the assistance of transformation procedure. The resulting equations are solved numerically using shooting and Runge-Kutta methods. Impact of involved parameters on flow distributions is displayed through graphs. From the analysis it is inferred that Cattaneo Christov heat flux law exhibits hyperbolic equation which follows the causality principle and make the problem more compatible to real world applications. It is also deduced that magnetic field suppresses the velocity field and associated boundary layer region. Decrease in temperature profile and heat transfer coefficient is found against inciting magnitude of thermal relaxation parameter. Substantial decrease in velocity is found against increasing magnitude of Williamson fluid parameter and magnetic field parameter whereas skin friction coefficient increments. Confir-mation about present findings is executed by making comparison with existing literature.(c) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  • [ X ]
    Öğe
    Significance of cold cylinder in heat control in power law fluid enclosed in isosceles triangular cavity generated by natural convection: A computational approach
    (Elsevier, 2022) Shah, Imtiaz Ali; Bilal, Sardar; Akgul, Ali; Omri, Mohamed; Bouslimi, Jamel; Khan, Noor Zeb
    The selection of appropriate geometrical characteristics of enclosure has salient influence on performance of different thermal engineering processes and devices like microelectronics, heat exchangers, power engines, boilers, solar collectors, nuclear reactors and so forth. Specifically, the triangular cavity of different aspect ratios are used to obtain multi-objective optimization and gaining excellence in thermal performance of micro channels. Subsequently, the installation of cold cylinder in a triangular enclosure are extensively used to remove high energy dissipation in micro heat sinks and heat exchangers. So, the purpose of current effort is to probe thermal characteristics of power-law liquid describing features of shear thinning and thickening materials containing applications in lubrication and polymer industry. Heat transfer is generated by the consideration of natural convection process generated due to consideration of cold walls and cylinder with provision of non-uniform heating at base wall. No-slip velocity conditions are supposed at all walls of isosceles triangle cavity. Solution of attained differential system is simulated by capitalizing finite element based COMSOL Multiphysics software (Version 5.6). Domain discretization by distributing into triangular and rectangular elements is conceded and equations at element levels are discretized by executing weak formulation. The validation of adopted numerical procedure is established by making agreement with formerly available works in both statistical and graphical approaches. Streamlines and isotherms are plotted and discussed against various parametric regimes. This study reveals noticeable influence of involved physical parameters on average and local heat flux coefficients, kinetic energy and cutlines against involved physical parameters are also evaluated. It is inferred thorough the analysis that with uplift in Rayleigh number (Ra) produces enrichment in kinetic energy and local heat transfer coefficients whereas reverse pattern is depicted against power-law index.(n): (c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

| Siirt Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Siirt Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Siirt, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim