Yazar "Khan, Ilyas" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A numerical study of heat and mass transfer characteristic of three-dimensional thermally radiated bi-directional slip flow over a permeable stretching surface(Nature Portfolio, 2024) Ullah, Hakeem; Abas, Syed Arshad; Fiza, Mehreen; Khan, Ilyas; Rahimzai, Ariana Abdul; Akgul, AliWithin fluid mechanics, the flow of hybrid nanofluids over a stretching surface has been extensively researched due to their influence on the flow and heat transfer properties. Expanding on this concept by introducing porous media, the current study explore the flow and heat and mass transport characteristics of hybrid nanofluid. This investigation includes the effect of magnetohydrodynamic (MHD) with chemical reaction, thermal radiation, and slip effects. The nanoparticles, copper, and alumina are combined with water for the formation of a hybrid nanofluid. Using the self-similar method for the reduction of Partial differential equations (PDEs) to the system of Ordinary differential equations (ODEs). These nonlinear equation systems are solved numerically using the bvp4c (boundary value solver) technique. The effect of the different physical non-dimensional flow parameters on different flow profiles such as velocity, temperature, concentration, skin friction, Nusselt and mass transfer rate are depicted through graphs and tables. The velocity profiles diminish with the effect of magnetic and slip parameters. The temperature and concentration slip parameters reduce the temperature and concentration profile respectively. The higher values of magnetic factor lessened the skin friction coefficient for both slip and no-slip conditions. An elevation in the thermal slip parameter reduced the boundary layer thickness and the heat transfer from the surface to the fluid. The Nusselt number amplified with the climbing values of the radiation parameter. The mass transfer rate depressed with the solutal slip parameter. Comparison is made with the published work in the literature and there is excellent agreement between them.Öğe Analysis of a diffusive chemical reaction model in three space dimensions(Taylor & Francis Inc, 2024) Ahmed, Nauman; Ali, Javaid; Akguel, Ali; Hamed, Y. S.; Aljohani, A. F.; Rafiq, Muhammad; Khan, IlyasThis article proposes an implicit operator splitting nonstandard finite difference (OS-NSFD) scheme for numerical treatment of two species in three space dimensions reaction-diffusion glycolysis model. Since, the unknown state variables exhibiting the concentrations of species in glycolysis models and they cannot be negative and obtaining their positive solutions is a challenging task. The established theoretical result ensures that our proposed OS-NSFD scheme is unconditionally convergent at equilibrium point and fulfills the condition of positivity of solutions on contrary to other methods. Further, we analyze the existence and uniqueness of the solution obtained for the underlying system. To highlight the effectiveness of OS-NSFD scheme we compare the simulation results of OS-NSFD scheme with three well-known existing operators splitting finite difference (FD) schemes, namely, forward Euler explicit, backward Euler implicit and Crank Nicolson splitting schemes. Many existing techniques provide with the restricted positive solutions which do not work always. These techniques are only applicable if certain conditions on the discretized parameters are considered otherwise; they produce negative solutions, which is not the physical feature of the real system. The current work bridges this gap by catering the unconditional positive solutions to the reaction diffusion models.Öğe Analysis of fuzzified boundary value problems for MHD Couette and Poiseuille flow(Nature Portfolio, 2022) Siddique, Imran; Nadeem, Muhammad; Khan, Ilyas; Jamil, Raja Noshad; Shamseldin, Mohamed A.; Akgul, AliIn an uncertain atmosphere, the magnetohydrodynamics (MHD) flow in three principal flows of the third grade fluid across two parallel plates is presented. Fuzzy differential equations are constructed by manipulating dimensionless differential equations. The prime purpose of the current article is to use a semi-analytical approach fuzzy-based Adomian decomposition method to achieve numerical results for nonlinear FDEs with fuzzy boundary conditions. Triangular fuzzy numbers are used in fuzzy BCs with help of alpha-cut approach. This strategy is linked to the membership function. In a graphic and tabular depiction, the effect of a and other constraints on fuzzy velocity profiles is explored. The current findings are in good agreement with their previous numerical and analytical results in a crisp environment.Öğe Finite difference simulations for magnetically effected swirling flow of Newtonian liquid induced by porous disk with inclusion of thermophoretic particles diffusion(Elsevier, 2022) Bilal, S.; Shah, Imtiaz Ali; Akgul, Ali; Nisar, Kottakkaran Sooppy; Khan, Ilyas; Khashan, M. Motawi; Yahia, I. S.Heat and mass transfer analysis of viscous liquid flow generated by rotation of disk has generated prodigious interest due to promising utilizations in numerous processes such as thermal energy generation systems, turbine rotators, geothermal energy preservations, chemical processing, medicinal instrumentations, computing devices and so forth. In view of such extraordinary utilizations in numerous engineering procedures existent exertion is excogitated to disclose flowing phenomenon over rotating disk. To raise the importance of current analysis influential physical aspects like magnetic field, permeability, Dufour and Soret diffusion phenomenon are also incorporated. Subsequently, flow field distributions are analyzed for suction and injection cases. Modelling is structured via PDE's by obliging constitutive conservation laws. Boundary layer approach is executed to reduce complexity of attained partial differential system. Transformations developed by Karman are implemented to convert developed differential framework into ODE's. Implicitly finite differenced technique known as Keller Box is engaged to find solution of coupled intricate high order ordinary differential equations. Influence of flow controlling parameters on associated distributions are revealed through graphical and tabular representations. The related quantities of engineering interest like coefficients of wall drag force, along radial and tangential directions are also computed. Credibility of presently computed results is established by constructing comparison with previously published literature. It is inferred that magnetic strength parameter enhances tangential and radial components of velocity whereas contrary trend is depicted in axially directed velocity. In addition, temperature and momentum distributions show up surging attribute versus magnetic field parameter. All associated profiles have exhibited decrementing aspects against suction parameter. It is also revealed that increment in Soret tends to produce depreciation in temperature profile whereas concentration distribution is enhanced. (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.Öğe Two-dimensional MHD boundary layer flow of a ternary hybrid nanofluid across a stretching sheet with inclined MHD: Numerical approach(Wiley-V C H Verlag Gmbh, 2024) Fiza, Mehreen; Abas, Syed Arshad; Ullah, Hakeem; Akgul, Ali; Aljohani, Abdulrahman F.; Khan, IlyasIncreasing the efficiency of a thermal system is important in a wide variety of technological contexts, such as vehicle cooling systems, power production, microelectronics, heat exchangers, and air conditioning. The current study examines a boundary layer two-dimensional inclined magnetohydrodynamic flow of a ternary hybrid nanofluid across a stretching sheet that includes MgO,TiO2,andCoFe2O4${\mathrm{MgO}}, {\mathrm{TiO}}_{\mathrm{2}}, {\mathrm{and}}\ {\mathrm{CoFe}}_{\mathrm{2}}{{\mathrm{O}}}_{\mathrm{4}}$ nanoparticles. These nanoparticles are combined with water as the base fluid to form a ternary hybrid nanofluid. The present work aims to analyze the impact of several slip conditions utilizing Arrhenius' activation energy along with the binary chemical reaction on the flow profiles. To characterize the model, a system of partial differential equations (PDEs) is utilized. With the assistance of similarity transformations, the given PDEs of the form are converted into ordinary differential equations. The leading equations are subjected to boundary layer theory, and then the system is numerically tackled with the help of the built-in numerical approach bvp4c. Results obtained from this numerical solution are presented in graphs and tables which are discussed briefly. The results indicate that there is a downward trend in the velocity profile if the enhancement occurs in both the velocity slip and the magnetic component. A lower temperature is achieved through the use of the temperature slip parameters. In addition, it turned out that a rise in the Eckert number caused an upswing in the surface temperature of a sheet. The activation energy escalates the concentration profile, while the Schmidt number and chemical reaction rate both are falls. The Sherwood number improved when the values of Brownian motion and thermophoresis factors enlarged while the local Nusselt number became lower.