Yazar "Kanan, Mohammad" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Analyzing multiplicative noise effects on stochastic dynamical ?4 equation using the new extended direct algebraic method(Elsevier, 2024) Manzoor, Zuha; Iqbal, Muhammad Sajid; Omer, Nader; Zakarya, Mohammed; Kanan, Mohammad; Akgul, Ali; Hussain, ShabbirThe stochastic dynamical phi(4) equation is obtained by adding a multiplicative noise term to the classical phi(4) equation. The noise term represents the random fluctuations that are present in the system and is modeled by a Wiener process. The stochastic dynamical phi(4) equation is a powerful tool for modeling the behavior of complex systems that exhibit randomness and nonlinearity. It has a wide range of applications in physics, chemistry, biology, and finance. Our goal of this paper is to use the new extended direct algebraic method to find the stochastic traveling wave solutions of the dynamical phi(4) equation. We explore the new trigonometric, hyperbolic, and rational functions using the new extended direct algebraic method. Furthermore, we use Matlab to plot 3D surfaces of exact solutions to show how multiplicative noise affects the solutions to the stochastic dynamical phi(4) equation.Öğe INTELLIGENT COMPUTING PARADIGM FOR SECOND-GRADE FLUID IN A ROTATING FRAME IN A FRACTAL POROUS MEDIUM(World Scientific Publ Co Pte Ltd, 2023) Kanan, Mohammad; Ullah, Habib; Raja, Muhammad Asif Zahoor; Fiza, Mehreen; Ullah, Hakeem; Shoaib, Muhammad; Akgul, AliThe numerical methods such as the artificial neural networks with greater probability and nonlinear configurations are more suitable for estimation and modeling of the problem parameters. The numerical methods are easy to use in applications as these methods do not require costly and time-consuming tests like the experimental study. In this study, we use the Levenberg-Marquardt-based backpropagation Process (LMP) to create a computing paradigm that makes use of the strength of artificial neural networks (ANN), known as (ANN-LMP). Here we use the ANN-LMP to obtain the solution of the second-grade fluid in a rotating frame in a porous material with the impact of a transverse magnetic field. The 1000 data set points in the interval [0, 1] are used for the network training to determine the effect of various physical parameters of the flow problem under consideration. The experiment is executed of six scenarios with different physical paramaters. ANN-LMP is used for evaluating the mean square errors (MSE), training (TR), validation (VL), testing (TT), performance (PF) and fitting (FT) of the data. The problem has been verified by error histograms (EH) and regression (RG) measurements, which show high consistency with observed solutions with accuracy ranging from E-5 to E-8. Characteristics of various concerned parameters on the velocity and temperature profiles are studied.Öğe Numerical approach toward ternary hybrid nanofluid flow with nonlinear heat source-sink and fourier heat flux model passing through a disk(Elsevier B.V., 2023) Alqawasmi, Khaled; Alharbi, Khalid Abdulkhaliq M.; Farooq, Umar; Noreen, Sobia; Imran, Muhammad; Akgül, Ali; Kanan, MohammadThe use of a ternary hybrid nanofluid, a new form of nanofluid, can improve heat movement. The current research employs a two-dimensional steady model to investigate nonlinear thermal radiation via ternary hybrid nanofluid flow across a revolving disc. The study of manganese zinc ferrite, copper, and silver nanocomposite base hybrid nanofluid across a spinning disc is gaining traction in invention and research due to its broad range of applications. To derive dimensionless forms of regulating paired nonlinear partial differential equations, a collection of pertinent similarity transformations is used. Based on the shooting method, the modified collection of ODEs is then analytically solved by bvp4c via the computational tool MATLAB. Furthermore, as the magnetic parameter values are reduced, the fluid velocity declines while the fluid temperature grows over a spinning disc. For larger levels, the temperature of the distribution and the radiant heat component rises. The ternary composite nanofluid has the largest impact on the surface. Furthermore, compared to the hybrid and based nanofluids, the heat generation rate of the ternary nanofluid combination is the higher transmission. The significance of Ag nanoparticles in the food industry is because of their anti-bacterial and anti-fungicidal properties, silver (Ag) is widely used in everyday products such as fabrics, pastes, polymers, food, and detergents. Manganese zinc ferrites (MnZnFe2O4) have recently piqued the interest of material science researchers due to their broad variety of applications. They are extensively used in energy storage devices, catalysts, adsorbents, sensing and imaging, therapeutic action, and other applications. © 2023 The Author(s)