Yazar "Kalloum, Slimane" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Anaerobic digestion of dry palms from five cultivars of Algerian date palm (Phoenix dactylifera L.) namely H?mira, Teggaza, Tinacer, Aghamou and Takarbouchet: A new comparative study(Pergamon-Elsevier Science Ltd, 2023) Djaafri, Mohammed; Drissi, Aicha; Mehdaoui, Sabrina; Kalloum, Slimane; Atelge, M. R.; Khelafi, Mostefa; Kaidi, KamelThe lignocellulosic properties of date palm waste (dry palm) differ significantly from one cultivar to another, which affects the anaerobic digestion (AD) process. This study is believed to be amongst the first to evaluate the influence of date palm cultivars on the biomethane yield in order to offer an annual, continuous and cost-effective biogas production model. In this work, 5 cultivars from date palm waste namely; H'mira (H), Teg-gaza (Tg), Tinacer (Ti), Aghamou (Ag) and Takarbouchet (Tk) were evaluated for biogas production. All experi-ments were performed for 45 days with 5 reactors in triplicate under mesophilic conditions (37 degrees C). The highest methane yield of 231.87 ml of CH4/g of Volatile Solid (VS) was obtained with the Ag cultivars with a difference that varied between 37% and 62% depending on the cultivar type. These results indicate that the date palm cultivars massively influence the biomethane yield, it may give an opportunity for researchers to select the most suitable cultivars for methane production and provide opportunities to valorize other cultivars on other bene-ficial uses, such as adsorption, thermal insulation, or charcoal production etc.Öğe Co-digestion of vegetable peel with cow dung without external inoculum for biogas production: Experimental and a new modelling test in a batch mode(Elsevier Sci Ltd, 2021) Lahbab, Abderrahmane; Djaafri, Mohammed; Kalloum, Slimane; Benatiallah, Ali; Atelge, M. R.; Atabani, A. E.This paper examined both experimental and a new modelling test for biogas production based on Co-Digestion Ratio (CDR) of vegetable peel (VP) with cow dung (CD) without external inoculum. For this, vegetable peel was used as a substrate and cow dung was used as a co-substrate. Reactors in triplicate were prepared. The vegetable peel concentrations were 12, 8, 6 and 4 g VS/l with the same cow dung concentration (4 g of VS/l) which corresponds to a CDR of 3:1, 2:1, 1.5:1 and 1:1. A new mathematical model corresponding to the biotech anaerobic digestion process based only on the (CDR) and (VS) was implemented under Matlab Simulink. The experimental results indicate that the optimal cumulative methane production (CMP) of 2000 ml was generated in the reactor containing a (CDR) of 3:1 which corresponds to a methane yield of 170 ml CH4/ g VS. i.e., an improvement between 23 and 26% comparing to all other CDRs. The experimental results were conformed by the new mathematical model. After applying the invented new idea by converting the constants (Rm, L and Gm) into functions (Rm =f1 (CDR), L=f2(CDR) and Gm = f3 (VS)) and relating them to each other using the Gompertz relation. The new model was able to predict the methane produced using only two inputs: VS and CDR. While in the literature studies, which were used Gompertz relationship for kinetic modelling, the constants must be recalculated each time as a new model, although the substrates used are the same, only the composition is different. Analysis of the variance (ANOVA) between the experimental and modelling results showed that there is no statistically significant difference, with a significance level of 0.05. Finally, the invented new idea can be a key to another different research that uses the same substrate.Öğe Effect of stirring speeds on biodiesel yield using an innovative oscillatory reactor and conventional STR (A comparative study)(Elsevier Sci Ltd, 2022) Khelafi, Mostefa; Djaafri, Mohammed; Kalloum, Slimane; Atelge, M. R.; Abut, Serdar; Dahbi, Abdeldjalil; Bekirogullari, MesutThis paper aims to study the effect of stirring speed on biodiesel yield using an innovative oscillating reactor compared to the conventional stirring tank reactor. The efficiency of the invented reactor was compared with the conventional system, employing two catalysts (a homogeneous catalyst and a heterogeneous bio-catalyst). The obtained results showed that under low agitation speed of 50 rpm, the invented oscillating reactor is more efficient than the conventional system with a biodiesel yield of 93% compared to 90.13% using the heterogeneous catalyst and 93.53% compared to 92.7% using the homogeneous catalyst respectively. As for the higher stirring speeds, the conventional system was found to be slightly more efficient than the oscillating reactor when using the heterogeneous biocatalyst (96.03% against 94.42%) while the contrary was observed when using the homogeneous catalyst (94.43% against 95%). However, this slight increase in the biodiesel yield at higher speeds results in increasing production costs. This indicates that biodiesel production using the innovative oscillating reactor at low speeds is more economically viable. The characteristics of the produced biodiesel using the invented reactor were in agreement with the ASTM D6751 biodiesel standards. Moreover, a two-way ANOVA analysis was conducted to compare between groups that have been split on two independent variables as reactor type and stirring speed. The statistical analysis proved that the invented oscillating reactor performs better when using heterogeneous catalysts at low stirring speed levels. This study suggests that the biodiesel yield of the innovative reactor can be further enhanced by introducing a baffle system which provides a relatively larger contact surface area. Similarly, synthesis of other heterogeneous bio-catalysts derived from the date seed of another date palm cultivar can be tested to further improve the biodiesel yield.