Yazar "Kahya, Caglar" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Multi-objective optimization of 3D printing process parameters using gray-based Taguchi for composite PLA parts(Wiley, 2024) Tuncel, Oguz; Tufekci, Kenan; Kahya, CaglarThis study investigates the additive manufacturing (AM) process of 30% ceramic-reinforced composite PLA material using the fused deposition modeling (FDM) technique. The effects of various printing parameters on tensile strength, build time, and material consumption are comprehensively analyzed through a combination of the Taguchi method, analysis of variance (ANOVA), and gray relational analysis (GRA). Experimental design parameters include nozzle diameter, infill density, infill pattern, wall line count, print speed, and layer height. Statistical analyses reveal significant contributions of these parameters to mechanical properties and production efficiency. Single and multi-objective optimizations of the responses were performed. The single optimization resulted in a significant increase in tensile strength from 39.9 to 48.10 MPa. Production time was reduced from 16 to 9 min; material consumption decreased from 4.95 to 2.43 g for tensile test specimens. The use of GRA in multi-objective optimization has led to a significant improvement of 8.31% in the gray relational grade (GRG) when compared to the initial parameter settings. These findings provide valuable insights for optimizing FDM processes in the fabrication of composite PLA materials. This contributes towards the advancement of additive manufacturing technology and its applications across various industries. and its applications across various industries.Öğe Optimization of Flexural Performance of PETG Samples Produced by Fused Filament Fabrication with Response Surface Method(Mdpi, 2024) Tuncel, Oguz; Kahya, Caglar; Tufekci, KenanAdditive manufacturing (AM), particularly fused filament fabrication (FFF), has gained significant attention for its design flexibility and cost-effectiveness. This study focuses on optimizing FFF parameters that employ response surface methodology (RSM) to enhance the flexural performance of polyethylene terephthalate glycol (PETG) parts. Three essential parameters-layer height, print speed, and nozzle temperature-were varied, and their effects on flexural strength, flexural modulus, flexural toughness for ultimate strength, flexural toughness at 5% strain, and strain at ultimate strength were evaluated. Based on a Box-Behnken design, the experiments revealed significant effects of these parameters on the mechanical responses. The analysis of variance (ANOVA) indicates that layer height predominantly affects flexural modulus and toughness, while nozzle temperature significantly impacts flexural strength. The RSM models exhibited high accuracy, with R2 values exceeding 99%. Optimal parameter combinations yield remarkable improvements: flexural strength reached 39.55 MPa, flexural modulus peaked at 1344.60 MPa, flexural toughness for ultimate strength reached 218.22 J/mm3, flexural toughness at 5% strain reached 381.47 J/mm3, and strain at ultimate strength reached 3.50%. Validation experiments confirm the effectiveness of the optimization, with errors below 3.17%.