Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Javier Garcia-Pacheco, Francisco" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    f-Statistical convergence on topological modules
    (Amer Inst Mathematical Sciences-Aims, 2022) Javier Garcia-Pacheco, Francisco; Kama, Ramazan
    The classical notion of statistical convergence has recently been transported to the scope of real normed spaces by means of the f-statistical convergence for f a modulus function. Here, we go several steps further and extend the f-statistical convergence to the scope of uniform spaces, obtaining particular cases of f-statistical convergence on pseudometric spaces and topological modules.
  • [ X ]
    Öğe
    General methods of convergence and summability
    (Springer, 2021) Javier Garcia-Pacheco, Francisco; Kama, Ramazan; del Carmen Listan-Garcia, Maria
    This paper is on general methods of convergence and summability. We first present the general method of convergence described by free filters of N and study the space of convergence associated with the filter. We notice that c(X) is always a space of convergence associated with a filter (the Frechet filter); that if X is finite dimensional, then l(infinity)(X) is a space of convergence associated with any free ultrafilter of N; and that if X is not complete, then l(infinity)(X) is never the space of convergence associated with any free filter of N. Afterwards, we define a new general method of convergence inspired by the Banach limit convergence, that is, described through operators of norm 1 which are an extension of the limit operator. We prove that l(infinity)(X) is always a space of convergence through a certain class of such operators; that if X is reflexive and 1-injective, then c(X) is a space of convergence through a certain class of such operators; and that if X is not complete, then c(X) is never the space of convergence through any class of such operators. In the meantime, we study the geometric structure of the set HB(lim):={T is an element of B(l(infinity)(X),X):T|(c(X))=lim and parallel to T parallel to=1} and prove that HB(lim) is a face of B-LX(0) if X has the Bade property, where L-X(0):={T is an element of B(l(infinity)(X),X):c(0)(X)subset of ker(T)}. Finally, we study the multipliers associated with series for the above methods of convergence.

| Siirt Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Siirt Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Siirt, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim