Yazar "Gurbuz, Huseyin" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Analysis of Experimental Values Obtained at Different Cutting Parameters and MQL Flows with S/N Ratios and ANN(Gazi Univ, 2021) Gurbuz, Huseyin; Gonulacar, Yunus EmreIn this study, the effect of cutting speed, feed rate and MQL flow rate on main cutting forces (Fc) and average surface roughness (Ra) in the turning process of AISI 4140 steel was investigated both experimentally and statistically. Accordingly, signal/noise (S/N) ratios and artificial neural networks (ANN) were used to evaluate the experimental results. As cutting parameters in machining experiments, three different cutting speeds (75, 100, 125 m/min), three different feed rates (0.16 - 0.25 - 0.5 mm/rev), three different MQL flow rates (0.35 - 0.8 - 1.7 ml/min) and a constant depth of cut (2.5 mm) were selected. In machining experiments, it was determined that the increase in MQL flow rate is more effective on Fc than Ra. It was also seen that both Fc and Ra increased with the feed, and generally decreased with the cutting speed in all MQL flow rate applications. R-2 values obtained through S/N ratios and ANN for Fc and Ra were found to be R-S/ N(Fc)(2)= 0.9996, R-S/ N(Ra)(2)= 0.9984, R-YSA( Fc)(2)= 0.9990 and R-YSA(Ra)(2)= 0.9884. According to S/N ratios, it was determined that the most effective control factors on Fc and Ra are feed rate, cutting speed and MQL flow rate, respectively. Depending on the regression values obtained, it was determined that S/N ratios and ANN are valid in predicting experimental data at high confidence intervals.Öğe Effect of MQL flow rate on machinability of AISI 4140 steel(Taylor & Francis Inc, 2020) Gurbuz, Huseyin; Gonulacar, Yunus Emre; Baday, SehmusMany studies were performed about the influence of minimum quantity lubrication (MQL) technique on cutting performance in the literature, but there is no paper examining the effect of different MQL flow rates and cutting parameters on machinability of AISI 4140 material as a whole. In this study, the effects of different MQL flow rates and cutting parameters on surface roughness, main cutting force and cutting tool flank wear (VB), with great importance among the machinability criteria, and forming as a result of the machining of AISI 4140, were revealed. At the end of the experiments, it was determined that rise of flow rate affected main cutting forces positively to a certain extent; yet, it exhibited no significant effect on surface roughness, but reduced VB. Also, it was observed that both main cutting force and surface roughness increased with the increase of feed, while generally decreased with the increase of cutting speed. It was seen that flank wear was positively affected by the increase in flow rate; and this decreased with the increase in flow rate. R(2)values obtained as 99.8% and 99.9% for main cutting forces and surface roughness values modeled statistically with the help of quadratic equations, respectively.Öğe Experimental and statistical investigation of the effects of MQL, dry and wet machining on machinability and sustainability in turning of AISI 4140 steel(Sage Publications Ltd, 2022) Gurbuz, Huseyin; Gonulacar, Yunus EmreThe applications of cutting fluids in metal cutting have negative results such as increasing machining cost and polluting environment, water and soil pollution stemming from wastes. Therefore, use of Minimum Quantity Lubrication (MQL) technique is generally preferred since it not only gives better results but also exhibits favorable influences on environmental pollution and human health. The objective of this experimental and statistical study is to investigate the effects of both machining conditions (MQL, Dry and Wet) and cutting parameters on sustainability and machinability. Another aim of this study is to establish significance of control factors on the response values by using signal to noise (S/N) ratio, Taguchi orthogonal array, analyses of variance (ANOVA), linear and quadratic equations and to select optimal cutting parameters as well. Also, the Pugh matrix approach was utilized to compare different coolant types in terms of sustainable manufacturing. According to the experimental results, it was found that MQL cutting significantly decreased cutting tool wear when compared to dry and wet cutting, while it reduced main cutting force (Fc) and surface roughness (Ra) in general. The results of S/N ratios showed that MQL had more significant effect on Ra and Fc than wet and dry cutting. The values of optimal cutting condition were obtained as 0.16 mm/rev and 125 m/min for feed rate and cutting speed in MQL machining, respectively. According to the experimental results, it was found that MQL cutting, when compared dry and wet cutting, decreased by average 25%(dry), 5%(wet), 15%(dry), 2%(wet), 44%(dry) and 9%(wet) in terms of cutting tool wear, Fc and Ra, respectively. According to ANOVA, feed rate is the most effective factor on Fc and Ra values. It was found that the results estimated for Fc and Ra values using Taguchi method, linear and quadratic equations are quite successful within 3% deviation. According to Pugh matrix approach assessment results, MQL machining was superior to dry and wet machining in terms of sustainability and cleaner production.Öğe Optimization and evaluation of dry and minimum quantity lubricating methods on machinability of AISI 4140 using Taguchi design and ANOVA(Sage Publications Ltd, 2021) Gurbuz, Huseyin; Emre Gonulacar, YunusIn this work, it is aimed to study the effects of dry machining and minimum quantity lubrication application on machinability in turning AISI 4140 steel by utilizing different cutting parameters. Also, this study contains effects and optimization of cutting conditions (dry and minimum quantity lubricating), feed rate, and cutting speed on surface roughness (Ra) and main cutting forces (Fc) determined by employing the Taguchi method. At the end of experiments, it was established that compared to dry machining operations, minimum quantity lubricating significantly reduced cutting tool wear, while Fc and Ra decreased in general. Analyses of variance, regression analysis, signal-to-noise ratio, and orthogonal array were employed to analyze the effects and contributions of independent variables on dependent variables. The optimum levels of the dependent variables for reducing Fc and Ra using signal-to-noise rates were established. According to signal-to-noise ratios, minimum quantity lubricating had a more important effect on Fc and Ra than dry machining. The optimal conditions for Fc and Ra were at 0.16 mm/rev feed rate, 125 m/min cutting speed at minimum quantity lubricating. Analysis of variance results demonstrated that the feed rate is the most influential independent variable on Fc (93.976 %) and Ra (89.352 %). Validation test results exhibited that the Taguchi method and regression analysis were highly achieved methods in the optimization of independent variables for dependent variables. Taguchi optimization technique and regression analysis obtained from Fc (R-Tag.(2) = 0.972 and R-Rag.(2) = 0.997) and Ra (R-Tag.(2) = 0.985 and R-Rag.(2) = 0.996) measurements match really well with the experimental data.