Yazar "Ghazanfar, Sidra" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Analysis of multi-wave solitary solutions of (2+1)-dimensional coupled system of Boiti-Leon-Pempinelli(Nature Portfolio, 2024) Ghazanfar, Sidra; Ahmed, Nauman; Iqbal, Muhammad Sajid; Ali, Syed Mansoor; Akgul, Ali; Muhammad, Shah; Ali, MubasherThis work examines the (2+1)-dimensional Boiti-Leon-Pempinelli model, which finds its use in hydrodynamics. This model explains how water waves vary over time in hydrodynamics. We provide new explicit solutions to the generalized (2+1)-dimensional Boiti-Leon-Pempinelli equation by applying the Sardar sub-equation technique. This method is shown to be a reliable and practical tool for solving nonlinear wave equations. Furthermore, different types of solitary wave solutions are constructed: w-shaped, breather waved, chirped, dark, bright, kink, unique, periodic, and more. The results obtained with the variable coefficient Boiti-Leon-Pempinelli equation are stable and different from previous methods. As compared to their constant-coefficient counterparts, the variable-coefficient models are more general here. In the current work, the problem is solved using the Sardar Sub-problem Technique to produce distinct soliton solutions with parameters. Plotting these graphs of the solutions will help you better comprehend the model. The outcomes demonstrate how well the method works to solve nonlinear partial differential equations, which are common in mathematical physics.With the help of this method, we may examine a variety of solutions from significant physical perspectives.Öğe Exact and solitary wave structure of the tumor cell proliferation with LQ model of three dimensional PDE by newly extended direct algebraic method(Aip Publishing, 2023) Ghazanfar, Sidra; Ahmed, Nauman; Ali, Syed Mansoor; Iqbal, Muhammad Sajid; Akgul, Ali; Shar, Muhammad Ali; Bariq, AbdulAn essential stage in the spread of cancer is the entry of malignant cells into the bloodstream. The fundamental mechanism of cancer cell intravasation is still completely unclear, despite substantial advancements in observing tumor cell mobility in vivo. By creating therapeutic methods in conjunction with control engineering or by using the models for simulations and treatment process evaluation, tumor growth models have established themselves as a crucial instrument for producing an engineering backdrop for cancer therapy. Because tumor growth is a highly complex process, mathematical modeling has been essential for describing it because a carefully crafted tumor growth model constantly describes the measurements and the physiological processes of the tumors. This article discusses the exact and solitary wave behavior of a tumor cell with a three-dimensional linear-quadratic model. Exact solutions have been discussed in detail using the newly extended direct algebraic method, which presents a variety of answers to this issue based on the conditions applied. This article also illustrates its graphical behavior with surface and contour plots of several solitons.Öğe Imaging Ultrasound Propagation Using the Westervelt Equation by the Generalized Kudryashov and Modified Kudryashov Methods(Mdpi, 2022) Ghazanfar, Sidra; Ahmed, Nauman; Iqbal, Muhammad Sajid; Akgul, Ali; Bayram, Mustafa; De la Sen, ManuelThis article deals with the study of ultrasound propagation, which propagates the mechanical vibration of the molecules or of the particles of a material. It measures the speed of sound in air. For this reason, the third-order non-linear model of the Westervelt equation was chosen to be studied, as the solutions to such problems have much importance for physical purposes. In this article, we discuss the exact solitary wave solutions of the third-order non-linear model of the Westervelt equation for an acoustic pressure p representing the equation of ultrasound with high intensity, as used in acoustic tomography. Moreover, the non-linear coefficient B / A (being a part of space-dependent coefficient K), has also been investigated in this literature. This problem is solved using the Generalized Kudryashov method along with a comparison of the Modified Kudryashov method. All of the solutions have been discussed with both surface and contour plots, which shows the behavior of the solution. The images are prepared in a well-established way, showing the production of tissues inside the human body.