Yazar "Garai, Sourav" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Jasmonates and Salicylates: Mechanisms, Transport and Signalling During Abiotic Stress in Plants(Springer-Verlag Berlin, 2021) Hossain, Akbar; Ahmad, Zahoor; Moulik, Debjyoti; Maitra, Sagar; Bhadra, Preetha; Ahmad, Adeel; Garai, SouravPopulation across the globe are increasing at an alarming rate. UN Population Division currently (2020) expects that the world population is now 7.8 billion, which will be reached 10.9 billion (the median line) at the end of the twenty-first century. To meet the food demand of increasing population cereal equivalent food demand needs to be increased by about 10,094 million tons by the year 2030 and 14,886 million tons in 2050. At the same time, climate change will impact on agricultural productivity, as a result of the extreme events of abiotic stresses. For example, on an average, about 50% yield losses of several crops are occurred mostly due to high temperature (20%), low temperature (7%), salinity (10%), drought (9%) and other abiotic stresses (4%). Other earlier studies, estimated that a large enhancement of biomass and grain yield loss (83% on average) of wheat was observed when salinity was combined with drought stress. Global wheat production is estimated to fall by 6% for each degrees C temperature increase further and will be become more variable over space and time. To alleviate the antagonistic effect of abiotic stresses, generally, plants take numerous adaptive mechanisms. Among them, several phytohormones play an important role in abiotic stress tolerance in plants. The chapter discussed the role of phytohormones, particularly biosynthesis, transport and signalling mechanisms of jasmonates and salicylates during abiotic stress tolerance in plants.Öğe Supplementing Nitrogen in Combination with Rhizobium Inoculation and Soil Mulch in Peanut (Arachis hypogaea L.) Production System: Part I. Effects on Productivity, Soil Moisture, and Nutrient Dynamics(Mdpi, 2020) Mondal, Mousumi; Skalicky, Milan; Garai, Sourav; Hossain, Akbar; Sarkar, Sukamal; Banerjee, Hirak; Kundu, RajibPeanuts (Arachis hypogaea L.) are the world's fourth-most important source of edible oil and the third-most valuable source of high-quality vegetable protein; they also contain carbohydrates, fatty acids, vitamins, and minerals essential for good human nutrition. Peanuts area particularly valuable crop in tropical and subtropical regions. While the demand for peanuts is increasing globally, there is a significant gap in nitrogen supply and demand in peanut production systems. To alleviate this, nitrogen fertilizers are often applied indiscriminately; this practice leads to the deterioration of indigenous soil fertility and to a long-term decline in crop productivity. Considering these aspects of soil health, a field study was conducted over two consecutive winter (November-March) seasons in 2015-2016 and 2016-2017 at the research farm of the agricultural university Bidhan Chandra Krishi Viswavidyalaya in West Bengal, India. This study examined supplementing different levels of nitrogen fertilizer with rhizobium and soil mulch in an irrigated peanut crop. The effects of these management interventions were evaluated in terms of crop productivity, nutrient dynamics, soil moisture, and the soil microbial activity. Peanuts grown with the 100% recommended dose of nitrogen, which was applied with rhizobium and grown under polythene mulching, recorded the highest average pod yield (3.87 and 3.96 t ha(-1) in 2015-2016 and 2016-2017) and average kernel yield (2.88 and 2.99 t ha(-1)) in both growing seasons. This treatment also resulted in the greatest accumulation of nitrogen, phosphorous, and potassium by the peanut plants. In contrast, the maximum soil moisture distribution and the greatest total root zone moisture content were observed in the treatment with only rhizobium under the polythene mulch (i.e., no nitrogen was applied). The populations of soil bacteria and rhizobia were highest in the treatment where nitrogen fertilizer was applied to the crop at 75% of the recommended rate combined with rhizobium and under polythene mulch. After two cropping seasons, the peanut crop grown under polythene mulch with rhizobium and with nitrogen fertilizer applied at either the full recommended rate or 75% of this rate performed best in terms of crop productivity, soil nutrient dynamics, and soil moisture.Öğe Supplementing Nitrogen in Combination with Rhizobium Inoculation and Soil Mulch in Peanut (Arachis hypogaea L.) Production System: Part II. Effect on Phenology, Growth, Yield Attributes, Pod Quality, Profitability and Nitrogen Use Efficiency(Mdpi, 2020) Mondal, Mousumi; Skalicky, Milan; Garai, Sourav; Hossain, Akbar; Sarkar, Sukamal; Banerjee, Hirak; Kundu, RajibPeanut (Arachis hypogaea L.) is adorned as the one of the important sources of vegetable oil, protein, vitamins and several minerals, which could mitigate the nutritional gap worldwide. However, peanut cultivation in winter suffers from low temperature stress and knowledge lacuna regarding the optimum dose nitrogen. Therefore, the present investigations were carried out during the winter seasons 2015-2016 and 2016-2017 at the district seed farm of Bidhan Chandra Krishi Viswavidyalaya, an agricultural university in West Bengal, India (23 degrees 26' N, 88 degrees 22 ' E, elevation 12 m above mean sea level) to facilitate the comprehensive study of plant growth, productivity and profitability of an irrigated peanut crop under varied levels of nitrogen: with and without a rhizobium inoculants and with and without polythene mulch. Quality traits and nutrient dynamics were also itemized. Fertilizing with 100% of the recommended dose of nitrogen combined with rhizobium inoculant and polythene mulch significantly enhanced peanut plant growth, yield and yield-attributing traits, while resulting in the maximum fertilizer (i.e., nitrogen, phosphorus and potassium) uptake by different plant parts. The greatest number of root nodules occurred in the treatment that received 75% of the recommended dose of nitrogen with rhizobium supplementation under polythene mulch, while 50% of the recommended dose of nitrogen with no rhizobium resulted in maximum fertilizer nitrogen use efficiency. Applying the full recommended dose of nitrogen with the rhizobium inoculants and mulch resulted in maximum profitability in the peanut crop.