Yazar "Elshaboury, Nehal" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A novel metaheuristic optimization and soft computing techniques for improved hydrological drought forecasting(Pergamon-Elsevier Science Ltd, 2024) Katipoglu, Okan Mert; Ertugay, Nese; Elshaboury, Nehal; Akturk, Gaye; Kartal, Veysi; Pande, Chaitanya BaliramDrought is one of the costliest natural disasters worldwide and weakens countries economically by causing negative impacts on hydropower and agricultural production. Therefore, it is necessary to create drought risk management plans by monitoring and predicting droughts. Various drought indicators have been developed to monitor droughts. This study aims to forecast Streamflow Drought Index (SDI) values with various novel metaheuristic optimization-based Artificial Neural Network (ANN) and deep learning models to predict 1-month lead-time hydrological droughts on 1, 3, and 12-month time scales in the Konya closed basin, one of the driest basins in Turkey. To achieve this goal, the ANN model was integrated with the Firefly Algorithm (FFA), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) techniques and compared against long shortterm memory (LSTM) networks. While establishing the SDI prediction model, lag values exceeding the 95% confidence intervals in the partial autocorrelation function graphs were used. Model performance was evaluated according to scatter matrix, radar, time series, bee swarm graphs, and statistical performance metrics. As a result of the analysis, the PSO-ANN hybrid model with (R2:0.468-0.931) at station 1611 and the FFA-ANN hybrid model with (R2:0.443-0.916) at station 1612 generally have the highest accuracy.Öğe Hydrological Drought Prediction Based on Hybrid Extreme Learning Machine: Wadi Mina Basin Case Study, Algeria(Mdpi, 2023) Achite, Mohammed; Katipoglu, Okan Mert; Jehanzaib, Muhammad; Elshaboury, Nehal; Kartal, Veysi; Ali, ShoaibDrought is one of the most severe climatic calamities, affecting many aspects of the environment and human existence. Effective planning and decision making in disaster-prone areas require accurate and reliable drought predictions globally. The selection of an effective forecasting model is still challenging due to the lack of information on model performance, even though data-driven models have been widely employed to anticipate droughts. Therefore, this study investigated the application of simple extreme learning machine (ELM) and wavelet-based ELM (W-ELM) algorithms in drought forecasting. Standardized runoff index was used to model hydrological drought at different timescales (1-, 3-, 6-, 9-, and 12-month) at five Wadi Mina Basin (Algeria) hydrological stations. A partial autocorrelation function was adopted to select lagged input combinations for drought prediction. The results suggested that both algorithms predict hydrological drought well. Still, the performance of W-ELM remained superior at most of the hydrological stations with an average coefficient of determination = 0.74, root mean square error = 0.36, and mean absolute error = 0.43. It was also observed that the performance of the models in predicting drought at the 12-month timescale was higher than at the 1-month timescale. The proposed hybrid approach combined ELM's fast-learning ability and discrete wavelet transform's ability to decompose into different frequency bands, producing promising outputs in hydrological droughts. The findings indicated that the W-ELM model can be used for reliable drought predictions in Algeria.Öğe Modeling of irrigation water quality parameter (sodium adsorption ratio) using hybrid swarm intelligence-based neural networks in a semi-arid environment at SMBA dam, Algeria(Springer Wien, 2024) Achite, Mohammed; Katipoglu, Okan Mert; Elshaboury, Nehal; Kartal, Veysi; Akturk, Gaye; Ertugay, NeseSodium adsorption rate (SAR), which significantly affects soil and plant health, is determined according to the concentration of sodium ions, calcium, and magnesium in irrigation water. Accurate estimation of SAR values is vital for agricultural production and irrigation. In this study, hybrid swarm intelligence-based neural networks are used to model sodium adsorption ratio in irrigation water quality parameters in a semi-arid environment at Sidi M'Hamed Ben Aouda (SMBA) dam, Algeria. For this, the nature-inspired optimization techniques of particle swarm optimization (PSO), genetic algorithm (GA), Jaya algorithm (JA), artificial bee colony (ABC), and firefly algorithm (FFA) and the signal processing technique of variational mode decomposition (VMD) have been combined with artificial neural networks (ANN). Correlation matrices were used to select the data entry structure in the established models. Water quality parameters with a statistically significant and medium to high relationship with SAR values were presented as input to the model. The overall performance was measured using various statistical metrics, scatter diagrams, Taylor diagrams, correlograms, boxplots, and line plots. In addition, the effect of input parameters on model estimation was evaluated according to Sobol sensitivity analysis. As a result, the GA-ANN algorithm demonstrated superior performance (MSE = 0.073, MAE = 0.193, MAPE = 0.048, MBE=-0.16, R2 = 0.934, WI = 0.968, and KGE = 0.866) based on the statistical indicators, indicating better results compared to other models. The second-best model, ABC-ANN (MSE = 0.084, MAE = 0.233, MAPE = 0.066, MBE=-0.135, R2 = 0.897, WI = 0.965, and KGE = 0.920) was also selected. The weakest prediction outputs were obtained from the VMD-ANN model. The accurate and reliable estimation of SAR in irrigation water has the potential to facilitate improvements in agricultural irrigation management and agricultural production efficiency for farmers, agricultural practitioners, and policymakers.Öğe Short lead time standard precipitation index forecasting: Extreme learning machine and variational mode decomposition(Elsevier, 2024) Ladouali, Sabrina; Katipoglu, Okan Mert; Bahrami, Mehdi; Kartal, Veysi; Sakaa, Bachir; Elshaboury, Nehal; Keblouti, MehdiStudy region: Six regions in Algeria have been selected as follows: Ain Elhadjel, Msaad, Boussaada, Elkantara, M'sila and M'doukel. Study focus: This study focused on creating a novel hybrid VMD-ELM approach, established by combining the Variational Mode Decomposition (VMD) technique and the Extreme Learning Machine (ELM) algorithm as a preprocessing technique for predicting future droughts. The first 6 and 12-month SPI values 1, 2, and 3-month lead time values were estimated with the ELM algorithm. After that, meteorological variables and Standard Precipitation Index (SPI) values, divided into subcomponents with VMD, are presented to the ELM model, and a drought forecasting model is developed. Model performances were evaluated according to various visual and statistical criteria. New hydrological insights for the region: Soft computing techniques have become the preferred method for producing predictions due to their ability to minimize development time, require minimal input, and offer a relatively less complex approach when compared to dynamic or physical models. As a result of the analysis, it has been determined that the highest prediction accuracies are generally obtained in VMD-ELM models and SPI predictions with a 1-month lead time. The study outputs give important ideas to mite donors regarding water resource planning and climate change adaptation strategies in the study area and can be applied to other arid and semi -arid environments.Öğe Short lead time standard precipitation index forecasting: Extreme learning machine and variational mode decomposition (vol 54, 101861, 2024)(Elsevier, 2024) Ladouali, Sabrina; Katipoglu, Okan Mert; Bahrami, Mehdi; Kartal, Veysi; Sakaa, Bachir; Elshaboury, Nehal; Keblouti, Mehdi[Abstract Not Available]