Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Danish Ali" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Investigating slip velocity effects on thermal and mass transport in magnetized nanoparticle squeeze flow via numerical scheme
    (SAGE Publications, 2025-04-24) Danish Ali; Hakeem Ullah; Mehreen Fiza; Aasim Ullah Jan; Ali Akgül; AS Hendy; Saeed Islam
    Efficient control over heat and mass transport in confined fluid systems is essential for applications in biomedical devices, lubrication systems, and industrial cooling technologies. However, conventional studies often overlook the combined impact of velocity slip, magnetic effects, and nanoparticle concentration on squeeze flow, leading to gaps in understanding heat and mass transport mechanisms under dynamic compression. This research addresses this gap by investigating the influence of nanoparticle volume fraction, magnetic field intensity, velocity slip, Schmidt number, and squeeze number on the Cu-water based Magnetohydrodynamic (MHD) unsteady squeezing flow using a numerical approach. The governing nonlinear differential equations are solved using the bvp4c solver in MATLAB. Results indicate that the skin friction coefficient decreases with the increasing squeeze number, with values reaching -3.3907 for S = 1.0, aligning closely with already published results. Similarly, the Nusselt number decreases as S increases, with a computed value of 1.1195 at S = 1.0. The application of a stronger magnetic field reduces the velocity profile, while higher Schmidt numbers suppresses diffusion. The slip parameter has negligible impact on the concentration profile, while an increase in the squeeze number slightly elevates the concentration. This study provides quantitative insights into the combined effects of slip velocity, MHD, and nanoparticle concentration on squeeze flow, offering valuable implications for microfluidic cooling systems, biomedical transport, and high-performance lubrication technologies.
  • [ X ]
    Öğe
    MHD hybrid nanofluid flow via varying porous space amid two stretchable rotating disks: A numerical approach
    (SAGE Publications, 2025-03-17) Danish Ali; Hakeem Ullah; Mehreen Fiza; Aasim Ullah Jan; Ali Akgül; A.S. Hendy; Seham M Al-Mekhlafi
    This study investigates the thermal performance enhancement achievable through the utilization of hybrid nanofluids (HNF) in variable porous media subjected to Magnetohydrodynamic (MHD) effects in a Casson fluid with two stretchable rotating disks. In the present study, the titanium dioxide ((Formula presented.)) and silver ((Formula presented.)) nanoparticles are suspended in water, which served as the base fluid. The governing equations are derived using similarity transformations and solved numerically using the bvp4c method achieving convergence with an accuracy tolerance of (Formula presented.). The study explores the influence of variable porosity parameter, stretching parameters, Lorentz force, Casson parameter and Biot’s number on velocity, pressure, and temperature distributions. The findings reveal that axial velocity of the hybrid nanofluid increases with lower disk stretching and Casson parameters, while temperature declines with an increase in the variable porosity factor. The study also highlights that radial velocity variations depend significantly on disk stretching parameters, with opposing trends observed between the lower and upper disks. Enhanced thermal profiles are noted with increasing Biot numbers, whereas magnetic effects suppress tangential velocity. Moreover, the results reveal that hybrid nanofluids significantly enhance heat transfer rates compared to traditional nanofluids, with up to a 23% improvement observed for specific parameter settings. This work highlights the practical applicability of hybrid nanofluids in thermal management systems, such as cooling technologies in aerospace and energy systems. The high thermal conductivity of the Ag-TiO2 hybrid nanofluid makes it well-suited for cooling in microelectronic devices, where efficient heat dissipation is critical. Enhanced heat transfer properties are advantageous in solar collectors and geothermal systems, where maximizing energy efficiency through effective heat transport is essential. The model’s improved flow and thermal behaviors could contribute to efficient engine cooling, lubricant systems, and fuel cell performance, especially under high-performance and variable porosity conditions in aerospace and automobile industries.

| Siirt Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Siirt Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Siirt, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim