Yazar "Cengiz, Betul Peker" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe In Vitro Antitumor and Antioxidant Capacity as well as Ameliorative Effects of Fermented Kefir on Cyclophosphamide-Induced Toxicity on Cardiac and Hepatic Tissues in Rats(Mdpi, 2024) Yildiz, Songul Cetik; Demir, Cemil; Cengiz, Mustafa; Irmak, Halit; Cengiz, Betul Peker; Ayhanci, AdnanFermented prebiotic and probiotic products with kefir are very important to slow down and prevent the growth of tumors and to treat cancer by stimulating the immune response against tumor cells. Cyclophosphamide (CPx) is widely preferred in cancer treatment but its effectiveness in high doses is restricted because of its side effects. The aim of this study was to investigate the protective effects of kefir against CPx-induced heart and liver toxicity. In an experiment, 42 Wistar albino rats were divided into six treatment groups: the control (Group 1), the group receiving 150 mg/kg CPx (Group 2), the groups receiving 5 and 10 mg/kg kefir (Groups 3 and 4) and the groups receiving 5 and 10 mg/kg kefir + CPx (Group 5 and 6). Fermented kefirs obtained on different days by traditional methods were mixed and given by gavage for 12 days, while a single dose of CPx was administered intraperitoneally (i.p.) on the 12th day of the experiment. It was observed that alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatinine kinase-MB (CK-MB), ischemia modified albumin (IMA) and Troponin I values, which indicate oxidative stress, increased in the CPx-administered group, and this level approached that of the control in the CPx + kefir groups. Likewise, as a result of the kefir, the rats' CPx-induced histopathological symptoms were reduced, and their heart and liver tissue were significantly improved. In conclusion, it was observed that kefir had a cytoprotective effect against CPx-induced oxidative stress, hepatotoxicity and cardiotoxicity, bringing their biochemical parameters closer to those of the control by suppressing oxidative stress and reducing tissue damage.Öğe Molecular docking analyses of Escin as regards cyclophosphamide-induced cardiotoxicity: In vivo and in Silico studies(Academic Press Inc Elsevier Science, 2021) Gur, Fatma; Cengiz, Mustafa; Kutlu, Hatice Mehtap; Cengiz, Betul Peker; Ayhanci, AdnanThis study aims to investigate whether Escin (ES) can protect against Cyclophosphamide (CPM)-induced cardiac damage. The experimental rats were categorized as Control, CPM (200 mg/kg), ES (10 mg/kg), and CPM + ES Groups, each having 6 members. Their heart tissues were stained with Hematoxylin and Eosin and the structural changes were investigated under the light microscope. The biochemical markers of ischemia modified albumin (IMA), creatine kinase (CK-MB), antioxidant activity indicators Catalase (CAT), and superoxide dismutase (SOD) activities were measured using blood samples. Besides, the effects of CPM, ES, and CPM + ES upon CAT and SOD activities were shown via molecular docking studies. In the Single-Dose CPM group, CK-MB and IMA levels significantly increased while SOD and CAT levels significantly decreased. However, the heart tissues were damaged. CK-MB and IMA levels significantly decreased in CP+ ES Group. On the other hand, SOD, and CAT levels significantly increased and reduced the damage remarkably. Our findings showed that ES treatment successfully reduced the toxic effects upon the rats. The conclusion is that ES treatment can help protect the heart tissue against CPM-induced toxicity. Both in-vivo results and molecular modeling studies showed that the negative effects of CPM upon SOD activity were bigger than that of CAT.Öğe The protection afforded by kefir against cyclophosphamide induced testicular toxicity in rats by oxidant antioxidant and histopathological evaluations(Nature Portfolio, 2024) Yildiz, Songul Cetik; Demir, Cemil; Cengiz, Mustafa; Irmak, Halit; Cengiz, Betul Peker; Ayhanci, AdnanCyclophosphamide (CTX) is the most commonly used effective alkylating drug in cancer treatment, but its use is restricted because its toxic side effect causes testicular toxicity. CTX disrupts the tissue redox and antioxidant balance and the resulting tissue damage causes oxidative stress. In our study based on this problem, kefir against CTX-induced oxidative stress and testicular toxicity were investigated. Rats were divided into 6 groups: control, 150 mg/kg CTX, 5 and 10 mg/kg kefir, 5 and 10 mg/kg kefir + 150 CTX. While the fermented kefirs were mixed and given to the rats for 12 days, CTX was given as a single dose on the 12th day of the experiment. Testis was scored according to spermatid density, giant cell formation, cells shed into tubules, maturation disorder, and atrophy. According to our biochemical findings, the high levels of total oxidant status (TOS), and the low levels of total antioxidant status (TAS) in the CTX group, which are oxidative stress markers, indicate the toxic effect of CTX, while the decrease in TOS levels and the increase in TAS levels in the kefir groups indicate the protective effect of kefir. In the CTX-administered group, tubules with impaired maturation and no spermatids were observed in the transverse section of the testicle, while in the kefir groups, the presence of near-normal tubule structures and tubule lumens despite CTX showed the protective effect of kefir. In our study, it was observed that kefir had a protective and curative effect on CTX-induced toxicity and oxidative stress and could be a strong protector.Öğe The role of Bax/Bcl-2 and Nrf2-Keap-1 signaling pathways in mediating the protective effect of boric acid on acrylamide-induced acute liver injury in rats(Pergamon-Elsevier Science Ltd, 2022) Cengiz, Mustafa; Ayhanci, Adnan; Akkemik, Ebru; Sahin, Ilknur Kulcanay; Gur, Fatma; Bayrakdar, Alpaslan; Cengiz, Betul PekerIntroduction: This study aims to investigate whether boric acid (BA) can protect rats from acrylamide (AA)induced acute liver injury. Materials and methods: AA was used to induce acute liver injury. Thirty rats were divided into five group including Group 1 (saline), Group 2 (AA), Group 3 (20 mg/kg BA), Group 4 (10 mg/kg BA+AA) and Group 5 (20 mg/kg BA+AA). Their blood and liver were harvested to be kept for analysis. Liver function enzyme activities were performed by spectrophotometric method. Catalase (CAT), superoxide dismutase (SOD) activity, and malondialdehyde levels were determined by colorimetric method. The in-silico studies were performed using the blind docking method. Results: Administration AA to rats, biochemical parameters, liver histology, and expression levels of apoptotic markers were negatively affected. However, after the administration of BA, the altered biochemical parameters, liver histology, and expression levels of apoptotic markers were reversed. Moreover, the mechanisms of AA-induced deterioration in the levels of SOD, CAT, and Nrf2-Keap-1 and the mechanisms of the protective effect of BA against these deteriorations were explained by in silico studies. Conclusion: Thus, the present study could explain the interactions between AA and thiol-containing amino acid residues of Keap-1, the effect of BA on these interactions, and the biochemical toxicity caused by the AA. In this sense, this work is the first of its kind in the literature. Based on the biochemical, histopathological, and in silico results, it can be suggested that BA has the potential to be used as a protective agent against AA-induced liver injury.