Yazar "Botmart, Thongchai" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A comprehensive mathematical structuring of magnetically effected Sutterby fluid flow immersed in dually stratified medium under boundary layer approximations over a linearly stretched surface(Elsevier, 2022) Bilal, Sardar; Shah, Imtiaz Ali; Akgul, Ali; Tekin, Merve Tastan; Botmart, Thongchai; Yousef, El SayedOn the implication of tension force, viscoelastic materials deform in accordance with viscous and elastic characterization. Dilute polymer solutions portray the examples of viscoelastic liquids and Sutterby model successfully represent it due to high degree polymerization distributions. In addition, polymer aqueous solutions behave as shear thinning and thickening liquids in response to infinite shear stress so Sutterby fluid is considered as best model to depict the features of liquids at high stress magnitude. Diverse utilities of diluted polymeric solutions are encountered in industrial, biological and technological practices, for instance, agricultural sprayers, cleansing products, clay coaters, polymerized melts and many more. So, this research communicates theoretical and computational thermal assessment of Sutterby fluid containing radiation aspects over a linearly moving sheet embedded in stratified medium which exposes the novelty of work. Moreover, the impacts of magnetic field and chemical reactions are also obliged. So, the principal objective pertains to adumbrate flow behavior of Sutterby liquid in the attendance of aforementioned physical parameters. Mathematical formulation in view of governing relations are changed into nondimensionalized form through transformation approach. Convergent and accurate solution is accessed through renowned numerical shooting procedure along with integrated Runge-Kutta scheme. The computed results of emerged parameters on velocity, concentration and thermal fields are revealed by means of snapshots. Magnitude of associated wall drag coefficient and reduced heat and mass fluxes are explained in graphical and tabular formats. The salient outcomes are as follows. Consequence of the proposed research investigation infers that augmenting power index momentum distribution decays whereas skin friction uplifts. Furthermore, it is inferred that concentration distribution amplifies against upsurging magnitude of solutal stratification parameter while opposite nature is noticed in case of temperature profile against associated stratification parameter. Additionally, it is concluded that escalating magnitude of radiation parameter tends to elevates the dimensionless temperature profile. Subsequently, rise in concentration profile against Schmidt number is observed whereas against Prandtl number temperature of fluid expressing declining aptitude. Also, declining response in momentum of fluid is manifested against Reynold and Deborah numbers.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).Öğe Impacts of joule heating with Cattaeno- Christove heat flux model in a MHD flow of Erying- Powell fluid on a Riga plate(Elsevier, 2023) Shoukat, Zeeshan; Zubair, Muhammad Hashir; Farman, Muhammad; Akguel, Ali; Sultan, Muhammad; Sharipov, Shavkat Safarovich; Botmart, ThongchaiThis article is related to analysing the consequences of joule heating and thermal (hot) radiation on the limit layer stream of a non-Newtonian liquid (Powell-Eyring fluid) while electro transversal magnetic field is present and Cattaneo Christov double diffusion via a convectively heated Riga Plate. The effects of the coefficient of thermophoresis and Brownian motion on joule heating are included in this mathematical model. In this paper, we introduced a new condition namely zero mass flux. A rectangular coordinates system is being employed for the flow equations to get the momentum, energy equations and concentration equations mathematically. By employing a similarity transformation, established (partial differential equations) PDE is reduced into an ordi-nary differential equations ODE. This method is integrated with the Runge-Kutta RK technique to solve this nonlinear ODE numerologically. With Graph, we show different parameters of velocity and temperature etc. Skin friction, with the help of a graph we can also inspect the Nusselt number and Sherwood number in detail. While studying we noticed that the increase of Hartmann number and fluid parameter is caused to increases in fluid velocity and thickness of the boundary layer.Öğe Mathematical analysis about influence of Lorentz force and interfacial nano layers on nanofluids flow through orthogonal porous surfaces with injection of SWCNTs(Elsevier, 2022) Qureshi, Zubair Akbar; Bilal, Sardar; Khan, Unaiza; Akgul, Ali; Sultana, Mariam; Botmart, Thongchai; Zahran, Heba Y.The effort is presented to numerical examine the flow behavior of non-Newtonian fluid through orthogonal porous surfaces. A two-phase model of nanofluids simulations is considered which represents speculative features of materials that are obliged in biomechanics, lubricants for-mation, polymer solution, suspension, etc. The mechanism of interfacial nano layer at surfaces is deliberated through thermal conductivity. Numerical sculpting of non-Newtonian CNT fluid including the impact of chemical reaction, heat flux and mass transfer source is manifested in the form of partial differential equations. Similarity variables are capitalized to transmute governing modeled conservation laws into ordinary non-dimensional expressions. Assessment of flow attribut-ing profiles is disclosed by implementing the Runge-Kutta procedure in collaboration with the shooting method. The numerical stability with convergence rate is also discussed here. Graphical visualization and numerical data about surface drag coefficients and heat and mass transfer rates are also presented. The effect of expansion and contraction (-2 < a < 2) on boundary layer thick-ness is discussed in detail. The rate of heat transfer increases with the increase of boundary layer thickness in the presence of single-wall carbon nanotubes (SWCNT) is observed. An increase in heat transfer profile due to the presence of SWCNTs with the variation of thickness and radius of sustainable particles is perceived. The nano layer thickness is a significant effect related to the heat transfer rate.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/ 4.0/).Öğe Modeling and analysis of fractional order Zika model(Amer Inst Mathematical Sciences-Aims, 2022) Farman, Muhammad; Akgul, Ali; Askar, Sameh; Botmart, Thongchai; Ahmad, Aqeel; Ahmad, HijazWe propose mathematical model for the transmission of the Zika virus for humans spread by mosquitoes. We construct a scheme for the Zika virus model with Atangna-Baleanue Caputo sense and fractal fractional operator by using generalized Mittag-Leffler kernel. The positivity and boundedness of the model are also calculated. The existence of uniquene solution is derived and stability analysis has been made for the model by using the fixed point theory. Numerical simulations are made by using the Atangana-Toufik scheme and fractal fractional operator with a different dimension of fractional values which support the theoretical outcome of the proposed system. Developed scheme including simulation will provide better understanding in future analysis and for control strategy regarding Zika virus.Öğe On analysis of magnetized viscous fluid flow in permeable channel with single wall carbon nano tubes dispersion by executing nano-layer approach(Elsevier, 2022) Shah, Imtiaz Ali; Bilal, Sardar; Akgul, Ali; Tekin, Merve Tastan; Botmart, Thongchai; Zahran, Heba Y.; Yahia, Ibrahim S.The prime motive of this pagination is to adumbrate attributes of water-based hybrid nanoliquid flow with dispersion of single wall carbon nanotubes. An innovative thermal conductance model containing the aspects of nanolayer formation along with shape and size of inserted particles is obliged. Flow transport mechanism is addressed mathematically in the form Navier Stokes equations with magnetization. In addition, heat and mass transport mechanism is manipulated by considering the impression of viscous dissipation and chemical reactions. Walls of channels are assumed to be porous in order to examine the phenomenon of suction and injection. Mathematical formulation of problem is represented in view of ODE's and simulated computationally by Keller Box scheme. Subsequently, Newton method is utilized to solve system of nonlinear equations. Results are revealed through graphs and tables showing behavior of associated momentum, temperature and concentration profile against involved parameters. Quantities of engineering interest like wall drag coefficient, heat and mass fluxes are computed. Credibility of work is shown by creating match with existing study and an excellent agreement is found. After thorough analysis it is determined that heat flux increases with induction of single wall carbon nanotubes in base liquid. It is also manifested that thermal conductance of base fluid enriches with increase in thickness of nano layer and radius of particles. In addition, positive trend in skin friction and heat flux coefficients is measured against elevation in nanoparticle volume fraction. Opposite behavior in velocity and temperature distributions against all flow variables near upper and lower walls of channel is depicteddue to provision suction and injection wall velocities. Due to consideration of viscous dissipation heat transfer rate with in the flow domain reduces. By increasing Reynold number concentration distribution diminishes due to dominant effect of inertial forces. Decline in momentum distribution against Hall current parameter is adhered. Uplift and decrement in temperature distribution is manifested against heat source and sink parameters respectively. (C) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.