Yazar "Belyankova, Yelizaveta" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Biological assays, electrochemical behavior, and theoretical DFT calculations of Ru(II) complexes of chiral phosphinite based based on ?-amino alcohols: Transfer hyrogenation of ketones using a HCOOH/ Et3N mixture(Elsevier, 2024) Rafikova, Khadichakhan; Meric, Nermin; Binbay, Nil Ertekin; Okumus, Veysi; Sever, M. Serif; Belyankova, Yelizaveta; Tursynbek, SaniyaSynthesis of two phosphinite ligands based on beta-amino alcohols, in high yields has been demonstrated. When we treated [Ru(arene)(mu-Cl)Cl]2 {arene:p-cymene,benzene} with chelating phosphinite ligands, we obtained neutral Ru(II)-complexes possessing the general formula [Ru(arene)phosphiniteCl2]. The structure of the ligands and complexes was confirmed using analytical and spectroscopic techniques. The quantum chemical calculations were carried out for the ruthenium complexes at the DFT/CAM-B3LYP level of theory in gas phase. The phosphinite complexes were subjected to cyclic voltammetry studies in order to determine the energies of HOMO and LUMO levels and to estimate their electrochemical and some electronic properties. Organic complex -based memory substrates were immobilized using TiO2-modified ITO electrodes, and the memory functions of phosphinite-based organic complexes were verified by chronoamperometry (CA) and open -circuit potential amperometry (OCPA). In the present study, the antioxidant potentials of ruthenium-basedp-cymene and benzene complexes through DPPH radical scavenging, metal chelating, and reducing power activities were also determined. In addition, DNA binding abilities and antimicrobial activities of these complexes against pathogenic bacteria were studied. Finally, the ruthenium complex, (2S)-1-{[(2S)-2-[(diphenylphosphanyl)oxy]propyl][(1R)-1- phenylethyl]amino}propan-2-yldiphenyl phosphinitobis[dichloro(eta 6-benzene)ruthenium(II)] also catalyzed asymmetric transfer hydrogenation of acetophenone with high conversion (up to 99%) and good enantioselectivity (ee up to 89 %), in the existence of formic acid and triethylamine in dichloromethane medium under air atmosphere.Öğe Well designed iridium-phosphinite complexes: Biological assays, electrochemical behavior and density functional theory calculations(Pergamon-Elsevier Science Ltd, 2024) Rafikova, Khadichakhan; Meric, Nermin; Binbay, Nil Ertekin; Okumus, Veysi; Erdem, Kemal; Belyankova, Yelizaveta; Tursynbek, SaniyaMononuclear phosphinite Iridium complexes based on ferrocene group have been prepared and characterized by various spectroscopic techniques. The complexes were subjected to cyclic voltammetry studies in order to determine the energies of HOMO and LUMO levels and to estimate their electrochemical and some electronic properties. Organic complex-based memory substrates were immobilized using TiO 2 -modified ITO electrodes, and the memory functions of phosphinite-based organic complexes were verified by chronoamperometry (CA) and open-circuit potential amperometry (OCPA). Extensive theoretical and experimental investigations were directed to gain a more profound understanding of the chemical descriptors and the diverse electronic transitions taking place within the iridium complexes, as well as their electrochemical characteristics. The quantum chemical calculations were carried out for the iridium complexes at the DFT/CAM-B3LYP level of theory in the gas phase. Furthermore, the antioxidant, antimicrobial, DNA binding, and DNA cleavage activities of the complexes were tested. Complex 2 exhibited the highest radical scavenging activity (67.5 +/- 2.24 %) at 200.0 mg/L concentration. It was observed that the complexes formed an inhibition zone in the range of 8-15 mm against Gram + bacteria and in the range of 0-13 mm against Gram - bacteria. The agarose gel electrophoresis method was used to determine the DNA binding and DNA cleavage activities of the complexes. All of the tested complexes had DNA binding activity; however, complexes 1, 2 , and 8 showed better binding activity than the others.