Yazar "Bektas, H." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The Effect of Salinity on Root Architecture in Forage Pea (Pisum sativum ssp. arvense L.)(Agricultural Research Communication Centre, 2021) Acikbas, S.; Ozyazici, M. A.; Bektas, H.Background: Plants face different abiotic stresses such as salinity that affect their normal development, growth and survival. Forage pea is an important legume crop for herbage production in ruminants. Its agronomy requires high levels of irrigation and fertilization. This study aimed to evaluate the effect of salinity on seedling root system development in forage pea under semi-hydroponics conditions. Methods: Different treatment of NaCl doses (0, 50, 100, 150, 200, 250 and 300 mM) on root architecture was investigated in two different forage pea cultivars (Livioletta and Ulubatli) with contrasting root structures under controlled conditions. The experimental design was completely randomized design with three replications and nine plants per replication. Result: Salinity affects root and shoot development differently on these cultivars. Despite the salinity, Livioletta produced more shoot (0.71 g) and root biomass (0.30 g) compared to Ulubatli (0.52 g and 0.25 g for Root and Shoot biomass, respectively) at 150 mM and all other salinity levels. Livioletta developed a better root system and tolerated salt to a higher dose than Ulubatli. Understanding root system responses of forage pea cultivars may allow breeding and selecting salinity tolerant cultivars with better rooting potential.Öğe The Response of Grain Legumes to Vermicompost at Germination and Seedling Stages(Agricultural Research Communication Centre, 2021) Ceritoglu, M.; Erman, M.; Ceritoglu, F.; Bektas, H.Background: The importance of organic fertilizers in agricultural production has increased due to the negative effects of intensive chemical fertilizer use on soil, the environment and human health. Vermicompost, as a rich organic fertilizer and soil amendment material, maybe a viable alternative to chemical fertilizers. While a low concentration of vermicompost has a promotive effect on growth, it may lead to inhibition of germination and seedling growth. Therefore, this study aimed to find appropriate dose ranges for vermicompost application. Methods: The study was carried out as a factorial experiment with a completely randomized design with three replications. The experiment was conducted in a growth chamber as a pot study with four doses of vermicompost (control, 10, 20 and 30%). Eight cultivars from four different species were used. The response of germination and seedling traits to increased vermicompost concentration was investigated. Result: In general, while 10% and 20% of vermicompost showed a promotive effect depending on species, higher dose inhibited the germination and dry matter accumulation. As a result, the promotive effect of low dose and inhibitory effect of higher doses are thought to be caused by the complex chemical composition of vermicompost and increasing medium pH. Therefore, the concentration of the vermicompost that will cause pH changes should be carefully considered and the pH range in which the plant species show optimum growth should be well determined.