Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Baysal, Akin" seçeneğine göre listele

Listeleniyor 1 - 8 / 8
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Asymmetric transfer hydrogenation of alkyl/aryl or alkyl/methyl ketones catalyzed by known C2-symmetric ferrocenyl-based chiral bis(phosphinite)-Ru(II), Rh(I) and Ir(III) complexes
    (Elsevier Science Sa, 2016) Durap, Feyyaz; Karakas, Duygu Elma; Ak, Bunyamin; Baysal, Akin; Aydemir, Murat
    Known Ru(II), Rh(I) and Ir(III) complexes of C-2-symmetric ferrocenyl based chiral bis(phoshinite) ligands were catalyzed the asymmetric transfer hydrogenation of alkyl/aryl or alkyl methyl ketones. Corresponding secondary alcohols were obtained with high enantioselectivities up to 98% ee and reactivities using iso-propanol as the hydrogen source. (C) 2016 Elsevier B.V. All rights reserved.
  • [ X ]
    Öğe
    Chiral C2-symmetric ?6-p-cymene-Ru(II)-phosphinite complexes: Synthesis and catalytic activity in asymmetric reduction of aromatic, methyl alkyl and alkyl/aryl ketones
    (Elsevier Science Sa, 2018) Karakas, Duygu Elma; Aydemir, Murat; Durap, Feyyaz; Baysal, Akin
    Chiral C-2-symmetric bis(phosphinite) ligands and their binuclear ruthenium(II) complexes have been synthesized and used as catalysts in the ruthenium-catalyzed asymmetric transfer hydrogenation of aromatic, methyl alkyl and alkyl/aryl ketones using 2-propanol as both the hydrogen source and solvent in the presence of KOH. Under optimized conditions, all complexes showed high catalytic activity as catalysts in the reduction of various ketones to corresponding chiral secondary alcohols. Products were obtained with high conversions (99%) and moderate to good enantioselectivities (82% ee). Furthermore, C2-symmetric bis(phosphinite) ligands and their binuclear ruthenium(II) complexes were characterized by multinuclear NMR spectroscopy, FT-IR spectroscopy, LC/MS-MS and elemental analysis. (C) 2017 Elsevier B.V. All rights reserved.
  • [ X ]
    Öğe
    Chiral phosphinites as efficient ligands for enantioselective Ru(II), Rh(I) and Ir(III)-catalyzed transfer hydrogenation reactions
    (Springer, 2017) Baysal, Akin; Karakas, Duygu Elma; Meric, Nermin; Ak, Bunyamin; Aydemir, Murat; Durap, Feyyaz
    Metal-catalyzed enantioselective transfer reduction of ketones to enantiomerically enriched chiral alcohols has recently attracted attention. Therefore, a series of methyl alkyl or alkyl/aryl ketones have been reduced by using Ru(II), Rh(I) and Ir(III) catalysts based on C (2)-symmetric chiral ferrocenyl phosphinite ligands. The corresponding optically active secondary alcohols were obtained in excellent conversions and moderate-to-good enantioselectivities. The best results were obtained with an iridium catalyst, giving up to 98% conversion and 80% ee.
  • [ X ]
    Öğe
    Ferrocene based chiral binuclear ?6-benzene-Ru(II)-phosphinite complexes: Synthesis, characterization and catalytic activity in asymmetric reduction of ketones
    (Wiley, 2018) Al-bayati, Yaser W. Abdlhmed; Karakas, Duygu Elma; Meric, Nermin; Aydemir, Murat; Durap, Feyyaz; Baysal, Akin
    In the present study, a series of chiral C-2-symmetric ferrocenyl based binuclear (6)-benzene-Ru(II) complexes bearing diphenylphosphinite and diisopropylphosphinite moieties have been synthesised. The new binuclear (6)-benzene-Ru(II)-phosphinite complexes were characterised based on nuclear magnetic resonance (H-1, C-13, P-31-NMR), FT-IR spectroscopy and elemental analysis. Then, these complexes have been screened as catalytic precursors in the transfer hydrogenation of acetophenone with 2-propanol as both the hydrogen source and solvent in the presence of KOH. The corresponding optically active secondary alcohols were obtained in excellent conversion rates between 96 and 99% and moderate to good enantioselectivities (up to 78% ee). The complex 5 was the most efficient catalyst among the four new complexes investigated herein.
  • [ X ]
    Öğe
    Ketone transfer hydrogenation reactions catalyzed by catalysts based on a phosphinite ligand
    (Taylor & Francis Ltd, 2022) Rafikova, Khadichakhan; Baysal, Akin; Meric, Nermin; Zazybin, Alexey; Kayan, Cezmi; Isik, Ugur; Saparbaykyzy, Islam Sholpan
    Reaction of (+/-)-1-(2-furyl) ethanol with an equivalent Ph2PCl in the presence of Et3N proceeds in dry toluene under an argon atmosphere to give 1-(furan-2-yl)ethyl diphenylphosphinite (1) in good yield. Mononuclear complexes [dichloro(eta(6)-p-cymene)(1-furan-2-ylethyl diphenylphosphinite)ruthenium(II)] (2), [dichloro(eta(6)-benzene)(1-furan-2-ylethyl diphenylphosphinite)ruthenium(II)] (3), [chloro(eta(4)-1,5-cyclooctadiene)(1-furan-2-ylethyl diphenylphosphinite)rhodium(I)] (4) and [dichloro(eta(5)-pentamethylcyclopentadienyl)(1-furan-2-ylethyl diphenylphosphinite)iridium(III)] (5) were synthesized and characterized by microanalysis, infrared, MS, and NMR spectroscopies. The complexes are employed as catalysts in transfer hydrogenation of aromatic ketones. The complexes catalyzed reduction of a variety of aromatic ketone substrates bearing electron-withdrawing or donating substituents with very high conversion rates (up to 99%); 5 was the most efficient catalyst for the transfer hydrogenation of ketones.
  • [ X ]
    Öğe
    Synthesis of new boron complexes: application to transfer hydrogenation of acetophenone derivatives
    (Wiley-Blackwell, 2011) Kilic, Ahmet; Kayan, Cezmi; Aydemir, Murat; Durap, Feyyaz; Durgun, Mustaf; Baysal, Akin; Tas, Esref
    Two new boron complexes were synthesized from N-[3-(methylmercapto)aniline]-3,5-di-tert-butylsalicylaldimine (LH) with boron reagent BPh3 or BF3 center dot Et2O. These boron complexes are stable and easily soluble in protic solvents such as ethanol (C2H5OH) but hardly soluble in nonprotic solvents such as chloroform (CHCl3), dichloromethane (CH2Cl2) and tetrahydrofuran (THF). All new boron complexes have been fully characterized by both analytical and spectroscopic methods. The catalytic activities of complexes [LBPh2], 2, and [LBF2], 3, in the transfer hydrogenation of acetophenone derivatives were tested. Stable boron complexes were found to be efficient catalysts in the transfer hydrogenation of aromatic ketones in good conversions up to 99% in the presence of iso-PrOH/KOH. Copyright (C) 2011 John Wiley & Sons, Ltd.
  • [ X ]
    Öğe
    Synthesis, characterization and first application of chiral C2-symmetric bis(phosphinite)-Pd(II) complexes as catalysts in asymmetric intermolecular Heck reactions
    (Wiley-Blackwell, 2016) Karakas, Duygu Elma; Durap, Feyyaz; Aydemir, Murat; Baysal, Akin
    A series of new chiral C-2-symmetric bis(phosphinite) ligands and their palladium(II) complexes have been synthesized and for the first time used as catalysts in the palladium-catalysed asymmetric intermolecular Heck coupling reactions of 2,3-dihydrofuran with iodobenzene or aryl triflate. Under optimized conditions, products were obtained with high conversions and moderate to good enantioselectivities. The new C-2-symmetric bis(phosphinite) ligands and their palladium(II) complexes were characterized using multinuclear NMR and Fourier transform infrared spectroscopies and elemental analysis. Copyright (c) 2015 John Wiley & Sons, Ltd.
  • [ X ]
    Öğe
    Transfer hydrogenation reaction using novel ionic liquid based Rh(I) and Ir(III)-phosphinite complexes as catalyst
    (Elsevier Science Sa, 2016) Karakas, Duygu Elma; Durap, Feyyaz; Baysal, Akin; Ocak, Yusuf Selim; Rafikova, Khadichakhan; Kaya, Eda Cavus; Zazybin, Alexey
    Hydrogen transfer reduction methods are attracting increasing interest from synthetic chemists in view of their operational simplicity. Thus, interaction of [Rh(mu-Cl)(cod)](2) and Ir(eta(5)-C5Me5)(mu-Cl)Cl](2) with phosphinite ligand [(Ph2PO)-C7H11N2Cl]Cl, 1 gave new monodendate (1-chloro-3-(3-methylimidazolidin1-yl)propan-2-yl diphenylphosphinite chloride) (chloro eta(4)-1,5-cyclooctadiene rhodium(I))], 2 and (1chloro-3-(3-methylimidazolidin-1-yl)propan-2-yl diphenylphosphinite chloride) (dichloro n.5-pentamethylcyclopentadienyl iridium(III))1, 3 complexes, which were characterized by a combination of multinuclear NMR spectroscopy, IR spectroscopy, and elemental analysis. H-1-{P-31}NMR, H-1-C-13 HETCOR or H-1-H-1 COSY correlation experiments were used to confirm the spectral assignments. The novel catalysts were applied to transfer hydrogenation of acetophenone derivatives using 2-propanol as a hydrogen source. The results showed that the corresponding alcohols could be obtained with high activity (up to 99%) under mild conditions. Notably, (1-chloro-3-(3-methylimidazolidin-1-yl)propan-2-y1 diphenylphosphinite chloride) (chloro eta(4)-1,5-cyclooctadiene rhodium(I))], 2 complex is much more active than the other analogous complex, 3 in the transfer hydrogenation. Furthermore, compound, 2 acts as excellent catalysts, giving the corresponding alcohols in 97-99% conversions in 5 min (TOF <= 1176 h(-1)). (C) 2016 Elsevier B.V. All rights reserved.

| Siirt Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Siirt Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Siirt, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim