Yazar "Ayvaz, Ednan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An Integrated LSTM Neural Networks Approach to Sustainable Balanced Scorecard-Based Early Warning System(IEEE-Inst Electrical Electronics Engineers Inc, 2020) Ayvaz, Ednan; Kaplan, Kaplan; Kuncan, MelihDevelopments in the economic environment in the 2000s have become increasingly dynamic and complex. Rapid developments in this kind of economic environment threaten and restrain the sustainability of enterprises. Enterprises need to respond quickly to these burdens and threats to survive and sustain their operations efficaciously in a competitive market in the long run. In order to reduce possible uncertainties in the future and to anticipate economic crises, early risk warning systems should be developed. However, it is seen that management accounting researches are very limited or insufficient on the demand of enterprises for coping with such crises. The aim of this study is to diminish the deficiency in the strategic cost management and prediction of economic crises. Sustainable Balanced Scorecard (SBSC), which was developed as a strategic cost management tool, is constructed in a dynamic way by integrating the early warning system developed for enterprises with an innovative approach into SBSC. Additionally, early warning system model is developed in a manner that successfully predicts economic crises with long short time memory (LSTM) networks using economic macro variables in micro field. As a result of the integration of risk early warning system with SBSC, economic crises will be predicted and necessary strategies will be developed to cope with problems of the crises. Furthermore, predicting economic crises will be turned into opportunities or cause enterprises to make measures with minimum losses. In this model, crisis periods are successfully predicted two crises of 2002 and 2008 with 95.41& x0025; accuracy with macroeconomic data between 1998 and 2011.Öğe Reducing Operation Costs of Thyroid Nodules Using Machine Learning Algorithms with Thyroid Nodules Scoring Systems(Mdpi, 2022) Ayvaz, Erdal; Kaplan, Kaplan; Kuncan, Fatma; Ayvaz, Ednan; Turkoglu, HuseyinContinuous advancement in the health sector is essential to reduce costs and increase efficiency and quality of service. The widespread use of ultrasonography (USG) has made it possible to detect thyroid nodules with higher success rates. Some standard scoring systems have been developed to score thyroid nodules. Thyroid scoring systems are classification systems that determine the risk of cancer in thyroid nodules according to ultrasonographic characteristics and nodule size. Different scoring results for the same thyroid nodule may occur according to these different scoring systems, which can cause some unnecessary surgical interventions. In this study, some intelligent models are developed to assist thyroid scoring systems, with the aim to determine the correct surgical intervention and reduce operation costs by preventing unnecessary interventions and surgical procedures. The integration of current thyroid scoring systems (K-TIRADS, ACR-TIRADS, EU-TIRADS, ATA, and BTA) and machine learning methods provides radiologists and clinicians a decision-support mechanism in the evaluation of thyroid nodules. Correct diagnosis will help to reduce costs by helping prevent unnecessary procedures. The present dataset was retrospectively constructed using ultrasound images of thyroid nodules between 2014 and 2018. In determining the treatment process of thyroid nodules, Random Forest, Adaboost, J48 Decision Tree (J48 DT), and Support Vector Machine (SVM) models are used for increased prediction accuracy of thyroid scoring systems. The goal is to decrease redundant Fine Needle Aspiration (FNA) biopsies and surgical interventions of suspicious thyroid nodules. As a result of the study, higher degrees of accuracy are achieved in the determination of correct or incorrect surgical interventions of thyroid nodules using the J48 DT algorithm with the EU-TIRADS scoring system, with an accuracy rate of 99.7853%, compared to other classifiers.