Yazar "Ali, Mazhar" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Mitigation of Climate Change Through Carbon Farming(Springer International Publishing, 2023) Tariq, Samra; Mubeen, Muhammad; Hammad, Hafiz Mohkum; Jatoi, Wajid Nasim; Hussain, Sajjad; Farid, Hafiz Umar; Ali, MazharThere is still a lot of disagreement concerning the nature, substance, and, most critically, effect of the policy initiatives that are needed to decrease greenhouse gas emissions. Carbon farming is a viable technique for producing food and other products in a more sustainable manner. According to the Food and Agriculture Organization (FAO), livestock emissions account for 24% of world greenhouse gas (GHG) productions, with entire worldwide livestock emissions of 7.1 gigatons of CO2 equivalent per year accounting for 14.5% of overall human-caused GHG emissions. This chapter explains the present condition of climate change mitigation in developing nations using carbon farming and the ways these countries can adopt for increasing carbon sequestration. This chapter also discusses carbon farming, a climate-smart agriculture technique that uses plants to trap and store atmospheric carbon dioxide in soil, along with carbon sequestration. Forestry carbon sequestration, specifically by prevented deforestation, is a potential, cost-effective alternative for mitigating changing climate. We need to improve our biophysical knowledge about carbon farming co-benefits, predict the economic impacts of employing multiple strategies and policy incentives, and develop the associated integrated models to estimate the full costs and benefits of agricultural GHG mitigation to farmers and the rest of society. This can be achieved through joining near-real-time field measurements and offline, modeling, computing networks, weather data, and satellite imagery. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.Öğe Modern Breeding Approaches for Climate Change(Springer International Publishing, 2023) Afzal, Sadia; Mubeen, Muhammad; Hussain, Sajjad; Ali, Mazhar; Rashad Javeed, Hafiz Muhammad; Al-Ashkar, Ibrahim; Soufan, WalidClimate-smart agriculture is the emerging and sustainable option to mitigate the adverse effects of climate change (on crop adaptability) before it significantly influences global crop production. Crop development through modern breeding techniques, effective agronomic practices and exploitation of natural variability in neglected and popular crops are all good ways to meet future food demands. However, the rapidly changing environment requires technological interventions to improve crop climate resilience. Technological advances such as genome-edited transgenic plants, high-throughput phenotyping technologies combined with next-generation sequencing techniques, big data analytics and advances in modern breeding techniques help modern agriculture progress towards robotics or digital conversion to face future environmental adversaries. For example, speed breeding in combination with genomic and phenomic methods can lead to quicker identification of genetic factors and, as a result, speed up crop development programmes. Furthermore, combining next-generation interdisciplinary breeding platforms might open up new opportunities for developing climate-ready crops. Several integrated modern breeding platforms were created in the last few decades and are now employed worldwide. Africa and Asia have adopted these most frequently used crop improvement platforms with advanced techniques like multitrait association studies using genome-wide association studies (GWASs). These have permitted precise exploration of the genetic make-up of agricultural attributes in most crops. This chapter explores various ways to increase crop output by developing climate-resilient superior genotypes. Further, we discussed how combinatorial advanced breeding technologies and biotechnological approaches would be used for managing climate change’s consequences to promote crops with climate resilience. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.