Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Alhushaybari, Abdullah" seçeneğine göre listele

Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Analysis of Kerosene oil conveying silver and Manganese zinc ferrite nanoparticles with hybrid Nanofluid: Effects of increasing the Lorentz Force, Suction, and volume fraction
    (Elsevier, 2024) Farooq, Umar; Imran, Muhammad; Fatima, Nahid; Noreen, Sobia; Alhushaybari, Abdullah; Akgul, Ali; de la Sen, Manuel
    The current study aims to explore the magnetic field on a spinning disk with the hybrid nanofluid flow and Cattaneo-Christov heat theory in the existence of nonlinear thermal radiation incorporating Ag and MnZnFe2O4 nanoparticles. Because silver may increase the thermal characteristics of the base material, it has a wide variety of industrial, pharmaceutical, power generation, and heating and cooling applications. The thermal properties of a hybrid nanofluid were to be found by exploring the aspect of nanomaterials on heat transfer and fluid flow. The principal partial differential equations are converted into ordinary differential equations using appropriate similarity treatments. With the aid of the shooting strategy, higher-order ordinary differential equations are converted to first-order ordinary differential equations. To present the numerical data and graphical results of the flow parameters, the built-in solver Bvp4c in the computational tool MATLAB is used. Several plots are also used to investigate the upshot of physical parameters on the graphically depicted profiles, such as the suction and injection parameter, magnetic parameter, Prandtl number, temperature ratio parameter, thermal radiation parameter, thermal relaxation parameter, and volume friction nanoparticles. For the magnetic parameter, both velocity profiles dropped, but the heat profile increased. When the temperature ratio and heat source-sink parameters were increased while the Prandtl number was decreased, the heat field increased.(c) 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/ by-nc-nd/4.0/).
  • [ X ]
    Öğe
    Comprehensive investigations of (Au-Ag/Blood and Cu-Fe3O4/Blood) hybrid nanofluid over two rotating disks: Numerical and computational approach
    (Elsevier, 2023) Basit, Muhammad Abdul; Farooq, Umar; Imran, Muhammad; Fatima, Nahid; Alhushaybari, Abdullah; Noreen, Sobia; Eldin, Sayed M.
    The purpose of this work is to investigate the Darcy-Forchheimer flow of a hybrid nano -fluid within two parallel discs. We combine gold Au, silver Ag, copper Cu, and iron oxide Fe3O4 nanoparticles with base fluid blood in this framework. An appropriate similarity variables tech-nique is implemented to transform partial differential systems into ordinary systems. In the results validation section, the numerical result is evaluated using a higher-order precise algorithm (bvp4c), and determined to the analytical result is by making use of the firing approach. Pictorial judgments revealed the estimates of several physical variables that arise over the momentum distribution and thermal distribution profiles. As compared to nanofluid, hybrid nanofluid significantly improves heat transfer rate. The thermal profile is improved when the Brinkman number increases in value. As the porosity parameter is increased, the velocity profile decreases. As the amplitude of the rota-tion parameter increases, so does the pressure profile. The Darcy-Forchheimer medium investiga-tion of a hybrid nano-fluid streaming through the middle of two parallel disks is addressed, taking into account viscous dissipation and heat radiation for various nanoparticles. Additionally, enough agreement is observed when the numerical findings are compared to previously reported and analytical data. As compared to simple nanofluids, hybrid nanofluids have shown higher ther-mal properties and stability, making them attractive candidates for thermal applications such as solar thermal systems, automotive cooling systems, heat sinks, engineering, medical fields, or ther-mal energy storage.(c) 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
  • [ X ]
    Öğe
    Entropy optimized Ferro-copper/blood based nanofluid flow between double stretchable disks: Application to brain dynamic
    (Elsevier, 2023) Khan, Shan Ali; Yasmin, Sumeira; Waqas, Hassan; Az-Zo'bi, Emad A.; Alhushaybari, Abdullah; Akgul, Ali; Hassan, Ahmed M.
    Researchers and scientists were inspired by the enormous reactions from industry about heat transformation enhancements due to the entropy generation. The entropy generation shows as a extremes for complex mechanisms like solid state physics, two-phase flows, electro-magnetic air conditioning, and economic evaluation of manufacturing processes, as well as biological technologies chemistry, including biochemistry. We note here that many thermal mechanisms are related to the irreversibility system. The current work focused on the entropy generation impacts in viscous magnetized mono-nanofluids flow between stretchable rotating disks. Ferro and copper are considered as nanoparticles and Blood as a base fluid. The Darcy-Forchheimer porous medium and joule heating effects are considered. For simplifying the current analysis, suitable transformation were introduced in the mathematical description to renovate the partial differential equations (PDE's) into coupled ordinary ones. To solve the resulting ODEs well-known numerical algorithm bvp4c is used in Matlab in the light of Lobatto-IIIA formula. The consequence of sundry parameters against velocity components, pressure field, temperature distribution and entropy generation are described graphically.
  • [ X ]
    Öğe
    Mathematical analysis of heat and mass transfer efficiency of bioconvective Casson nanofluid flow through conical gap among the rotating surfaces under the influences of thermal radiation and activation energy
    (Elsevier B.V., 2024) Basit, Muhammad Abdul; Imran, Muhammad; Akgül, Ali; Khan Hassani, Murad; Alhushaybari, Abdullah
    In the current proceeding, the flow of incompressible non-Newtonian nanofluid called Casson nanofluid is considered. A conical gap occurred among the rotating disc and the cone filled with the fluid flow. Heat and mass transport through this nanofluid is done by the convection mode of heat transfer. The impacts of microorganisms, chemical processes, thermal radiation, minimal amount of energy, and magnetic field are also considered in the mathematical model of flow problem. The Casson nano-fluid governing equations are interpreted in cylindrical coordinates. By implementing proper similarity transformations, the modeling PDEs of energy, momentum, concentration, and microorganism density are transformed into non-linear ODEs. A set of non-linear ODEs that deals with the distributions of temperature, velocity, concentration, and motile microorganisms produced by this technique. MATLAB in-built ‘bvp4c‘ technique is utilized to solve these equations. Findings are displayed graphically and elaborated theoretically. The primary goal of this work is to examine the effects during the rotation of the disc and cone as well as the impacts of other variables on the rotation. The nano-fluid temperature and radial velocity are found to be negatively impacted by the rotation parameter whereas azimuthal velocity is positively impacted. The parametric values are taken as 0.1
  • [ X ]
    Öğe
    Recent progress in Cattaneo-Christov heat and mass fluxes for bioconvectional Carreau nanofluid with motile microorganisms and activation energy passing through a nonlinear stretching cylinder
    (Elsevier, 2024) Farooq, Umar; Basit, Muhammad Abdul; Noreen, Sobia; Fatima, Nahid; Alhushaybari, Abdullah; El Din, Sayed M.; Imran, Muhammad
    Aims: In the current study, the flow of Carreau nano-fluid through the stretched cylinder is subject to the influences of activation energy and heat source/sink with the Cattaneo-Christov heat fluxes model studied. Applications in recent times are the purpose of better heat and mass transport nanoparticles used for this purpose because of their better thermal conductivity than normal fluids. Nanofluids are used in medicines like agricultural sprays and with time it is used in the microprocessor for cooling and also used in the refrigeration industry as coolant. Methodology: The mathematical model was developed by taking these things into account and getting a model of nonlinear partial differential equations for administering this problem. These governing equations system modified into a system of ODE by utilizing appropriate similarity transform. For numerical computation or simulation, the 'bvp4c' built-in package of MATLAB is used to implement the shooting technique. Smooth implementation took place by introducing a set of variables to make our system dimensionless. Results/Conclusion: Graphical representation depicts the profiles of concentration, velocity, thermal, and microorganism density, and the impacts of various modeling quantities on these profiles are also discussed and elaborated. In tabular analysis, a contrast of computed outcomes with the previously available outcomes shows the accuracy of our computed results at different values of physical parameters. The presence of motile microorganisms improved the heat transfer rate. (c) 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/ by-nc-nd/4.0/).

| Siirt Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Siirt Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Siirt, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim