Yazar "Albalawi, Marzough Aziz" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Box-Behnken design based optimization of phenolic extractions from Polygonum equisetiforme roots linked to its antioxidant and antibacterial efficiencies(Frontiers Media Sa, 2023) Elgudayem, Farah; Aldiyab, Abdullah; Albalawi, Marzough Aziz; Omran, Awatif; Kafkas, Nesibe Ebru; Saghrouchni, Hamza; Var, IsilPurposeThe Polygonum equisetifome is a prospective plant source of high protein, unsaturated fatty acids, and useful safe bioactive molecules. Therefore, the aim of this study was to optimize the ultrasonic aqueous extraction of phenols from P. equisetifome roots using Box-Behnken design based statistical modeling, and to evaluate the antioxidant and antibacterial efficiencies of P. equisetifome root extracts against pathogenic bacteria. MethodsIn this study, the box-behnken design was used to optimize the extraction of phenols. The extraction temperature (30-70 degrees C), ultrasound assisted extraction (UAE) time (1-9 min), and liquid-solid ratio (35-45 mL/g) were investigated as the factors that influence the phenolic yield (Y1) and their DPPH (1,1-diphenyl-2-picrylhydrazyl) scavenging activity (Y2). ResultsThe optimal conditions for both responses were 50 degrees C, 5 min, and 40 mL/g. At these conditions, Y1 reached its maximum to be 45.321 mg GAE/g dry weight and Y2 to be 120.354 mu mol Trolox/g dry weight. The P. equisetifome roots contained water soluble phenol, high anthocyanin, and condensed tannins. Interestingly, the P. equisetifome extracts showed a relation to its antioxidant and antibacterial activities, FRAP (Ferric-reducing/antioxidant power), and ABTS scavenging activity were determined. The morphological and physico-chemical features of the extract were analyzed using SEM-EDX, FT-IR, and minimum inhibitory concentration (MIC) was analyzed against several pathogenic bacteria. The antibacterial activity of the extract showed that the extract is more efficient against Staphylococcus aureus, while the P. equisetifome extracts showed efficient MIC against S. aureus, followed by Bacillus cereus. SuggestionsThe relation of P. equisetifome extracts to its antioxidant, and antibacterial efficiencies open a new avenue of their potential uses in the food and pharmaceutical industries.Öğe Drought-Induced miRNA Expression Correlated with Heavy Metal, Phenolic Acid, and Protein and Nitrogen Levels in Five Chickpea Genotypes(Amer Chemical Soc, 2023) Inal, Behcet; Mirzapour, Mohsen; Tufekci, Ebru Derelli; Rustemoglu, Mustafa; Kaba, Adem; Albalawi, Marzough Aziz; Alalawy, Adel I.Drought is a prime stress, drastically affecting plant growth, development, and yield. Plants have evolved various physiological, molecular, and biochemical mechanisms to cope with drought. Investigating specific biochemical pathways related to drought tolerance mechanisms of plants through biotechnology approaches is one of the quickest and most effective strategies for enhancing crop production. Among them, microRNAs (miRNAs) are the principal post-transcriptional regulators of gene expression in plants during plant growth under biotic and abiotic stresses. In this study, five different chickpea genotypes (I?nci, Hasan bey, Arda, Seckin, and Diyar 95) were grown under normal and drought stress. We recorded the expression levels of microRNAs in these genotypes and found differential expression (miRNA396, miR408, miRNA414, miRNA528, and miRNA1533) under contrasting conditions. Results revealed that miRNA414 and miRNA528 considerably increased in all genotypes under drought stress, and expression levels of miRNA418, miRNA1533, and miRNA396 (except for the Seckin genotype) were found to be higher under the watered conditions. These genotypes were also investigated for heavy metal, phenolic acid, protein, and nitrogen concentrations under normal and drought stress conditions. The Arda genotype showed a significant increase in nitrogen (5.46%) and protein contents (28.3%), while protein contents were decreased in the Hasan bey and Seckin genotypes subjected to drought stress. In the case of metals, iron was the most abundant element in all genotypes (I?nci = 15.4 ppm, Hasan bey = 29.6 ppm, Seckin = 37.8 ppm, Arda = 26.3 ppm, and Diyar 95 = 40.8 ppm) under normal conditions. Interestingly, these results were related to miRNA expression in the chickpea genotypes and hint at the regulation of multiple pathways under drought conditions. Overall, the present study will help us to understand the miRNA-mediated regulation of various pathways in chickpea genotypes.