Yazar "Al-Samaraae, R. R." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Comparative investigation of multi-walled carbon nanotube modified diesel fuel and biogas in dual fuel mode on combustion, performance, and emission characteristics(Elsevier Sci Ltd, 2022) Atelge, M. R.; Arslan, Esenay; Krisa, David; Al-Samaraae, R. R.; Abut, Serdar; unalan, Sebahattin; Atabani, A. E.Biogas has been investigated as an alternative biofuel in dual fuel operating mode in a direct injection diesel engine. However, there is not sufficient information about using modified fuels with biogas. This study aimed to investigate the effects of modified diesel fuel and biogas on combustion behavior, performance, and emissions characteristics at 1500 rpm constant speed with 5 different load conditions at an interval of 25%. Diesel was modified with multi-walled carbon nanotubes with 30, 60, and 90 ppm. Diesel fuel and three modified fuels were used as pilot fuel and biogas was introduced through the intake manifold with the flow rate of 500 g/h as the primary fuel. Diesel mode fuels were denominated F1 while dual fuel mode fuels were labeled as F2, and the concentration levels were given subscript such as F2 (@60ppm). The experimental study revealed that modified fuel showed better combustion behaviors, performance, and emissions in comparison to diesel fuel. Further, the same trend was observed in the dual fuel mode. The maximum pressure of F2(@60 ppm) was 1% higher than F2 under dual fuel mode at the full load. Moreover, the coefficient of variation of the indicated mean effective pressure for dual fuel mode was found approximately 9.2, 6.9, 6.2, and 7.2% for F2, F2(@30 ppm), F2(@60 ppm), and F2(@90 ppm), respectively at full load. In addition, the energy share of biogas increased by 7.9, 8.7, and 7.1% for F2(@30 ppm), F2(@60 ppm), and F2(@90 ppm), respectively in comparison with F2 at full load. The highest decrease of brake specific energy consumption under the dual mode was obtained to be an 8% drop from F2(@60 ppm) compared to F2 at full load. At the same load, the brake thermal efficiency of F2(@30 ppm), F2(@60 ppm), and F2(@90 ppm) were noted to be 30.2, 30.4, and 30.0%, respectively which are higher than F2 (27.9%). The value of replaced diesel with biogas was noted 0.09, 0.23, 0.24, and 0.22 kg/h for F2, F2(@30 ppm), F2(@60 ppm), and F2(@90 ppm), respectively under the full load condition. Lastly, CO and HC emissions were almost the same value with and without modified fuel for dual fuel mode at the full load. Nevertheless, NO emission was slightly increased with modified fuel compared to F2. From these findings, it can be suggested that 60 ppm multi-walled carbon nanotubes additive can be an optimum level for combustion, performance, and emissions under the dual fuel mode.Öğe Investigation of a novel Defatted Spent Coffee Ground (DSCG)-supported Ni catalyst for fuel cell and supercapacitor applications(Elsevier, 2024) Hansu, Tulin Avci; Al-Samaraae, R. R.; Atelge, M. R.; Kaya, Mustafa; Kivrak, Hilal Demir; Bogrekci, Ismail; Yildiz, Yalcin SevkiWith the increase in energy demand, a material that can be used in fuel cell applications has been developed for both energy storage and the use of alternative energy sources to fossil fuels. In this study, a new Defatted Spent Coffee Ground (DSCG)-based electrode material was synthesized for two different application areas. A new electrocatalyst synthesis was carried out by subjecting DSCG to chemical activation and carbonization processes. The glycerol electrooxidation performances of the catalysts synthesized at 10-50 % Ni loading rates were investigated by CV measurements. 30 % Ni-DSCG catalyst exhibited the highest catalytic activity with 3.290 mA/ cm2.As 2 .As a result of the electrochemical measurements, 30 % Ni-DSCG catalyst with the best catalytic performance was used as the supercapacitor electrode material. The electrochemical performances of the produced super- capacitor electrodes were tested at room temperature using galvanostatic charge-discharge (GCD), Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques, and the capacity and stability of the electrodes were calculated as a result of the findings. In the calculations, the energy and power density of the 30 % Ni-DSCG supercapacitor electrode were calculated as 22.897 Wh kg(- 1) , 841.114 W kg(- 1) , respectively. The supercapacitor electrode capacitance was found to be 50.48 F/g. Its cyclic capacity was found to be 90 %. It showed that the DSCG-based synthesized electrocatalyst could be a good option for energy storage technology as EDLC electrode material and fuel cell applications as anode catalyst due to its good conductivity, superior cyclic stability, environmental friendliness and low cost.