Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Akda, Sueleyman" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    A new approach for congestive heart failure and arrhythmia classifiication using downsampling local binary patterns with LSTM
    (Tubitak Scientific & Technological Research Council Turkey, 2022) Akda, Sueleyman; Kuncan, Fatma; Kaya, Yilmaz
    Electrocardiogram (ECG) is a vital diagnosis approach for the rapid explication and detection of various heart diseases, especially cardiac arrest, sinus rhythms, and heart failure. For this purpose, in this study, a different perspective based on downsampling one-dimensional-local binary pattern (1D-DS-LBP) and long short-term memory (LSTM) is presented for the categorization of Electrocardiogram (ECG) signals. A transformation method named 1D-DS-LBP has been presented for Electrocardiogram signals. The 1D-DS-LBP method processes the bigness smallness relationship between neighbors. According to the proposed method, by downsampling the signal, the histograms of 1D local binary patterns (1D-LBP) calculated from the obtained signal groups are collected and included as a reference to the long short-term memory structure. The long short-term memory structure has been applied to 1D-DS-LBP conversion applied ECG signals with both unidirectional and bidirectional. To test the proposed approach, ECG signals of three (3) different states of congestive heart failure (CHF), arrhythmia (ARR), and normal sinus rhythm (NSR) consisting of 972 signals were used. Signals were taken from the MIT-BIH and BIDMC databases. Experiments were carried out in various scenarios. We observed that the success rate of the proposed approach obtained very high classification accuracies compared to other studies in the literature. The obtained ECG diagnostic performance values varied between 96.80% and 99.79%. Based on this, this approach has a high potential to have a wide field of study in medical applications.

| Siirt Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Siirt Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Siirt, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim