Yazar "Akarsu, Ceyhun" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Investigation of two different size microplastic degradation ability of thermophilic bacteria using polyethylene polymers(Taylor & Francis Ltd, 2023) Akarsu, Ceyhun; Ozdemir, Sadin; Ozay, Yasin; Acer, Omer; Dizge, NadirThere are several studies stating that many types of microplastics cannot be retained completely by conventional wastewater treatment systems. Therefore, it is necessary to prevent the discharge of these microplastics to the ecological system. The objective of this study was to investigate the biodegradation ability of two different size of PE (50 and 150 mu m) by using two Gram-positive, spore-forming, rod-shaped, and motile thermophilic bacteria, called strain Gecek4 and strain ST5, which can hydrolyse starch, were isolated from the soil's samples of Gecek and omer hot-springs in Afyonkarahisar, Turkey, respectively. Phenotypic features and 16S rRNA analyzing of strains also studied. According to these results, Gecek4s and ST5 were identified as Anoxybacillus flavithermus Gecek4s and Bacillus firmus ST5, respectively. Results showed that A. flavithermus Gecek4s could colonise the polymer surface and cause surface damage whereas B. firmus ST5 could not degrade bigger-sized particles efficiently. In addition, morphological changes on microplastic surface were investigated by scanning electron microscopy (SEM) where dimensional changes, irregularities, crack, and/or holes were detected. This finding suggests that there is a high potential to develop an effective integrated method for plastic bags degradation by extracellular enzymes from bacteria.Öğe Isolation of Thermophilic Bacteria and Investigation of Their Microplastic Degradation Ability Using Polyethylene Polymers(Mdpi, 2022) Ozdemir, Sadin; Akarsu, Ceyhun; Acer, Omer; Fouillaud, Mireille; Dufosse, Laurent; Dizge, NadirMicroplastics (MPs) pose potential public health challenges because of their widespread occurrences in all environmental compartments. While most studies have focused on the occurrence fate of microplastics in wastewater treatment systems, the biodegradation of microplastics in wastewater is generally little understood. Therefore, we used two Gram-positive and thermophilic bacteria, called strain ST3 and ST6, which were identified by morphological, biochemical, physiological, and molecular analyses, to assess the growth and biodegradation potential of two different sized (50 and 150 m) polyethylene particles. The degradation was monitored based on structural and surface morphological changes. According to 16S rRNA analyses, ST3 and ST6 were identified as Anoxybacillus flavithermus ST3 and Anoxybacillus sp. ST6, respectively. The occurrence of cracks, holes, and dimensional changes was detected by scanning electron microscopy. Moreover, critical characteristic absorption band formation and modifications were determined by Fourier transform infrared spectroscopy. In addition to these, it was found that Anoxybacillus flavithermus ST3 and Anoxybacillus sp. ST6 produced high level of alpha-Amylase. These results showed that thermophilic bacteria are capable of the biodegradation of microplastics and production of alpha-Amylase.