Yazar "Ahmed M. Galal" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A comparative study of two-phase flow of an infusion of gyrotactic microorganisms and dust particles in trihybrid nanofluid with melting phenomena and Soret–Dufour effects(Springer Science and Business Media LLC, 2024-12-27) Munawar Abbas; Mostafa Mohamed Okasha; Nargiza Kamolova; Ali Hasan Ali; Ibrahim Mahariq; Ali Akgül; Ahmed M. GalalBackground: This investigation's main goal is to examine the impacts of Soret and Dufour on Marangoni convective flow of dusty trihybrid nanofluid over a Plate containing gyrotactic microorganisms, heat generation, and melting processes. A trihybrid nanofluid containing nanoparticles of Magnesium oxide MgO, Titanium dioxide TiO2, and Silver Ag in a water-based fluid. This proposed model is used to contrast the activity of dual well-known trihybrid nanofluid models for thermal conductivity, the Hamilton–Crosser model and the Yamada-Ota model. Methods: An appropriate similarity variable is utilized to reduce governing partial differential equations to couple nonlinear ordinary differential equations. After that the system of equations is numerically solved using the effective Bvp4c Method. Applications: Especially in high-performance cooling applications like electronics and aeronautical engineering, this comprehensive study could be very helpful in enhancing thermal management systems. With regard to the introduction of bio-convection brought about by the presence of gyrotactic bacteria, this model can be applied to advanced bio-engineering applications such as bioreactors and medical equipment. Understanding the behavior of these complex fluids under gradients in concentration and Soret–Dufour effects may also lead to improvements in the production and processing of materials, where precise temperature and concentration controls are critical. Results: The temperature and velocity distributions of the dusty ternary hybrid nanofluid are shown to be predominant with higher melting parameters; while, the concentration and microorganism distributions show the opposite pattern.Öğe Characteristics of elastic deformation on Boger hybrid nanofluid using modified Hamilton–Crosser model: a local thermal nonequilibrium model(Springer Science and Business Media LLC, 2025-01-15) Mostafa Mohamed Okasha; Munawar Abbas; Muyassar Norberdiyeva; Dyana Aziz Bayz; Ibrahim Mahariq; Ansar Abbas; Ali Akgül; Ahmed M. GalalIn this investigation, elastic deformation characteristics on surface tension gradient flow of Boger hybrid fluid over a plate using modified Hamilton-Crosser Model are examined. The modeling takes into account the influence of local thermal nonequilibrium (LTNE). The expanded Cattaneo-Christov theory, which takes relaxation times into account, is the current theory for mass and heat transmission. Excellent heat transmission is offered by the energy equation-based LTNE model for both the liquid and solid phases. Therefore, in this work, two thermal distributions are used for both the liquid and solid phases. It can be applied to materials science to improve heat transmission procedures and nanotechnology, where accurate temperature control is essential for applications like electronic device cooling systems, microfluidic devices, and biomedical applications. Better modeling of complicated fluids in these systems is made possible by the addition of elastic deformation and LTNE, which enhances the systems' stability and efficiency, particularly under nonequilibrium heat conditions. The Bvp4c method is used to solve the model equation system numerically once the relevant similarity variables have condensed. To illustrate how different physical conditions affect the involved distributions, the findings are graphed. Results show that Boger fluid exhibits enhanced velocity at increasing solvent percent parameter values.Öğe Comparison study of modified and classical Hamilton-Crosser models for electrophoretic and thermophoretic particle deposition in stagnation point flow of diamond -SiC-Co3O4/diathermic oil-based trihybrid nanofluid(Springer, 2024) Ahmed M. Galal; Sahar Ahmed Idris; Munawar Abbas; Shaxnoza Saydaxmetova; Ali Hasan Ali; Humaira Kanwal; Ali AkgülThe current work examines the impact of heat generation on the stagnation point flow of a magnetized trihybrid nanofluid around a rotating sphere with electrophoretic and thermophoretic particle deposition. The trihybrid (Diamond –SiC–Co3O4/Do) nanofluid flow model consists of nanoparticles of Cobalt oxide (Co3O4), diamond (ND), and silicon carbide (SiC) dissolved in diathermic oil (DO). By comparing the modified model with the classical Hamilton–Crosser model, this study aims to investigate the heat transfer rate of a trihybrid nanofluid based on diamond –SiC–Co3O4/ diathermic oil. Through the analysis of trihybrid nanofluids based on diamond –SiC–Co3O4/Do diathermic oil, this model can optimize heat transmission in systems that need effective thermal management, like chemical reactors, electronics cooling, and energy storage. Trihybrid nanofluids' special qualities improve thermal conductivity, stability, and deposition control, which raises operational efficiency and dependability. It also helps with the design of sophisticated cooling systems for automotive and aerospace applications. These governing equations were solved with MATLAB's bvp4c tool after being transformed into ordinary differential equations via similarity variables. Results imply that, when compared to the classical model, the modified model accurately predicts higher heat transfer rates. As a consequence, trihybrid nanofluid heat transfer properties are better understood and thermal conductivity models are more accurate. The study shows that the concentration profile improved for both classical and modified Hamilton–Crosser models to enhance the values of electrophoretic particle deposition; while, inverse behavior is observed for thermophoretic particle deposition.Öğe The performance evolution of Xue and Yamada-Ota models for local thermal non equilibrium effects on 3D radiative casson trihybrid nanofluid(Springer Science and Business Media LLC, 2025-03-01) Ahmed M. Galal; Ali Akgül; Sahar Ahmed Idris; Shoira Formanova; Talib K. Ibrahim; Murad Khan Hassani; Abdullah A. Faqihi; Munawar Abbas; Ibrahim MahariqThe proposed study investigates the characteristics of Stefan blowing and activation energy on MHD Casson Diamond-[Formula: see text][Formula: see text]based trihybrid nanofluid over a sheet with LTNECs (local thermal non-equilibrium conditions) and permeable medium. The significance of Marangoni convection as well as heat generation are considered. In order to examine the properties of heat transmission in the absence of local thermal equilibrium conditions, this paper makes use of a simple mathematical model. Local thermal non-equilibrium situations typically result in two discrete and crucial temperature gradients in both the liquid and solid phases. In systems where material qualities and heat transfer efficiency are crucial, the utilization of Xue model and Yamada-Ota model and to assess the thermal conductivity of the nanofluid adds a comparison dimension and enables optimized design. The controlling partial differential equations are reduced to non-linear ordinary differential equations using an appropriate similarity transformation. The Bvp4c technique is used to resolve the resulting equations numerically. Applications in modern thermal management systems, especially those requiring precise heat transfer control (e.g., electronic cooling, medicinal devices, energy systems), will benefit greatly from this work. The model is especially applicable to processes where chemical reactions and internal heat sources are important, like in catalytic reactors and combustion systems, because it takes into account activation energy and heat generating effects. The findings indicate that when the value of the interphase heat transmission factor increases, the solid phase's temperature profile and liquid phase heat transfer rate drop.Öğe Thermophoretic particle deposition in thermo-bioconvection flow of diamond-SiC-Co₃O₄/water-based trihybrid nanofluid with oxytactic and gyrotactic microorganisms: biotechnological applications(Springer Science and Business Media LLC, 2025-04-09) Ibrahim Mahariq; Riadh Marzouki; Hawzhen Fateh M. Ameen; Munawar Abbas; Barno Abdullaeva; Maawiya Ould Sidi; Abdullah A. Faqihi; Ali Akgül; Ahmed M. GalalThe present study investigates the impacts of heat generation and Marangoni convection on the thermophoretic particle deposition in chemical reactive flow of Diamond -SiC- Co3O4Diamond -SiC- Co3O4WaterWater-based trihybrid nanofluid across a sheet with oxytactic and gyrotactic microorganisms. Gradients of surface tension are varied to find Marangoni convection. It can be used in a variety of industries, including welding, crystal formation, soap film stabilization, and drying silicon wafer. The trihybrid nanofluid Diamond -SiC- Co3O4Diamond -SiC- Co3O4H2OH2O flow model is made up of nanoparticles of diamond ND, and cobalt oxide Co3O4, silicon carbide SiC dissolved in water H2O. This model has applications in advanced bioengineering and environmental processes, including biofuel generation, wastewater treatment, and medication delivery system improvement. Microorganisms improve mass and heat transfer, which is advantageous for biomedical applications and microfluidic systems. Furthermore, industrial processes needing effective heat transfer, such cooling systems in biotechnology labs and reactors, can be optimized by the trihybrid nanofluid’s enhanced thermal characteristics. The constitutive equations were converted into ODEs using similarity variables, and then they were resolved applying MATLAB’s bvp4c function. The outcomes demonstrate that the modified model more exactly indicates higher heat transfer rates than the classical model. Concentration and oxytactic microorganism distributions decrease with increasing thermophoretic parameter.