Hansu, Tulin AvciAl-Samaraae, R. R.Atelge, M. R.Kaya, MustafaKivrak, Hilal DemirBogrekci, IsmailYildiz, Yalcin Sevki2024-12-242024-12-2420240957-58201744-3598https://doi.org/10.1016/j.psep.2024.08.093https://hdl.handle.net/20.500.12604/6705With the increase in energy demand, a material that can be used in fuel cell applications has been developed for both energy storage and the use of alternative energy sources to fossil fuels. In this study, a new Defatted Spent Coffee Ground (DSCG)-based electrode material was synthesized for two different application areas. A new electrocatalyst synthesis was carried out by subjecting DSCG to chemical activation and carbonization processes. The glycerol electrooxidation performances of the catalysts synthesized at 10-50 % Ni loading rates were investigated by CV measurements. 30 % Ni-DSCG catalyst exhibited the highest catalytic activity with 3.290 mA/ cm2.As 2 .As a result of the electrochemical measurements, 30 % Ni-DSCG catalyst with the best catalytic performance was used as the supercapacitor electrode material. The electrochemical performances of the produced super- capacitor electrodes were tested at room temperature using galvanostatic charge-discharge (GCD), Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques, and the capacity and stability of the electrodes were calculated as a result of the findings. In the calculations, the energy and power density of the 30 % Ni-DSCG supercapacitor electrode were calculated as 22.897 Wh kg(- 1) , 841.114 W kg(- 1) , respectively. The supercapacitor electrode capacitance was found to be 50.48 F/g. Its cyclic capacity was found to be 90 %. It showed that the DSCG-based synthesized electrocatalyst could be a good option for energy storage technology as EDLC electrode material and fuel cell applications as anode catalyst due to its good conductivity, superior cyclic stability, environmental friendliness and low cost.eninfo:eu-repo/semantics/closedAccessDSCGSupercapacitorElectrooxidationElectrocatalystInvestigation of a novel Defatted Spent Coffee Ground (DSCG)-supported Ni catalyst for fuel cell and supercapacitor applicationsArticle191760768N/AWOS:001314126600001Q12-s2.0-8520345711210.1016/j.psep.2024.08.093