Alagöz, Yusuf2024-12-242024-12-2420202147-6268https://doi.org/10.36753/MATHENOT.630031https://search.trdizin.gov.tr/tr/yayin/detay/400244https://hdl.handle.net/20.500.12604/4945A left R-module M is called max-injective (or m-injective for short) if for any maximal left ideal I,any homomorphism f : I ? M can be extended to g : R ? M, if and only if Ext1R(R/I, M) = 0for any maximal left ideal I. A left R-module M is called max-projective (or m-projective for short)if Ext1R(M, N) = 0 for any max-injective left R-module N. We prove that every left R-module has aspecial m-projective precover and a special m-injective preenvelope. We characterize C-rings, SF ringsand max-hereditary rings using m-projective and m-injective modules.eninfo:eu-repo/semantics/openAccessMatematikOn M-injective and M-projective ModulesArticle81465040024410.36753/MATHENOT.630031