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ABSTRACT
Additive manufacturing (AM), especially fused deposition modeling (FDM), has been widely used in industrial production pro-
cesses in recent years. The mechanical properties of parts produced by FDM can be predicted through the correct selection of 
printing parameters. In this study, 25 machine learning (ML) algorithms were used to predict the mechanical properties (hard-
ness, tensile strength, flexural strength, and surface roughness) of acrylonitrile butadiene styrene (ABS) samples fabricated by 
FDM. Experiments were conducted using three different layer thicknesses (100, 150, 200 μm), infill densities (50%, 75%, 100%), 
and nozzle temperatures (220°C, 230°C, 240°C). The effects of printing parameters on mechanical properties were investigated 
through analysis of variance (ANOVA). This analysis results indicated that infill density had the most significant effect on hard-
ness (55.56%), tensile strength (80.02%), and flexural strength (77.13%). In addition, the layer thickness was identified as the most 
influential parameter on the surface roughness, with an effect of 70.89%. The prediction performance of the ML algorithms was 
evaluated based on the mean absolute error (MAE), root mean squared error, mean squared error, and R-squared (R2) values. 
The KSTAR algorithm best predicted both hardness and surface roughness, with MAE values of 0.006 and 0.009, respectively, 
and an R2 value of up to 0.99. For the prediction of tensile and flexural strength, the MLP algorithm was determined to be the 
most successful method, achieving high accuracy (R2 > 0.99) for both properties. In addition, comparison graphs between the 
predicted and actual results showed high overall accuracy, with a particularly strong agreement for hardness, tensile strength, 
and surface roughness. The study identified the algorithms with the best prediction performance and provided recommendations 
for predicting the 3D printing process based on these findings.

1   |   Introduction

Additive manufacturing (AM) is a rapidly advancing production 
technology that has gained traction across various industrial 
fields in recent years [1, 2]. This technology enables the fabri-
cation of parts by adding layers, allowing for the cost-effective 
production of complex geometries compared with traditional 
manufacturing methods. The flexibility and design freedom 
offered by AM have led to its widespread application, partic-
ularly in the fields of prototyping, automotive, aerospace, and 

medicine [3–6]. However, realizing the full potential of AM re-
quires a precise determination of the production parameters and 
an understanding of how they affect the mechanical properties 
of the parts [7]. In this regard, optimizing production parame-
ters based on their effects can lead to improved product quality 
and cost efficiency [8].

Fused deposition modeling (FDM), an AM technique, is espe-
cially favored for its compatibility with thermoplastic materials 
[9–11]. FDM has gained significant traction in the industrial 
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and academic sectors because of its relatively low cost, wide 
material range, and broad applicability—from prototype pro-
duction to functional part fabrication [12, 13]. The materials 
commonly used in FDM are thermoplastic polymers, with 
high-performance engineering materials such as acrylonitrile 
butadiene styrene (ABS), polylactic acid (PLA), and polyeth-
ylene terephthalate glycol (PETG) being among the most widely 
utilized [14, 15]. FDM is a technology in which the production 
parameters play a critical role in the print quality and mechani-
cal properties [16, 17]. Factors like layer thickness, infill density 
(ID), and nozzle temperature (NT) directly affect the print qual-
ity and mechanical characteristics of the final product [18, 19]. 
Mechanical properties such as hardness, tensile strength, flex-
ural strength, and surface roughness can be optimized through 
proper adjustment of these parameters [20–22]. In contrast, in-
correct parameter selection can lead to print errors, low strength 
values, and a decrease in overall product quality. Optimizing 
printing parameters in FDM technology is crucial for mini-
mizing print time and cost while ensuring that the mechanical 
properties meet expectations [23]. Therefore, each printing pa-
rameter directly influences the performance of the final prod-
uct, and optimizing these parameters enables FDM to be used 
more effectively across a wide range of applications.

In recent years, machine learning (ML) methods have become 
valuable tools for predicting and optimizing AM processes 
[24–26]. ML enables more accurate modeling of the manufac-
turing process by working with large datasets and can predict 
the effects of specific parameters (such as print speed [PS], layer 
height [LH], and NT) on the final properties of products. This ap-
proach makes it possible to enhance process efficiency by reduc-
ing production time, minimizing material waste, and lowering 
energy consumption. ML techniques can understand complex 
data relationships, learn the dynamics of processes, and forecast 
future outcomes without human intervention [27]. This ability is 
particularly valuable in AM processes, where parameters have 
a direct impact on mechanical properties and numerous factors 
interact simultaneously. Consequently, ML helps improve prod-
uct quality, reduces production costs, and optimizes processes, 
thereby facilitating the adoption of economically and environ-
mentally sustainable manufacturing methods.

Studies on the application of ML algorithms in AM demonstrate 
the effectiveness of these technologies in optimizing production 
processes [28–32]. Cerro et al. applied ML algorithms to predict 
the surface roughness of parts produced by FDM using polyvi-
nyl butyral material [33]. Five input variables were determined, 
and 16 parts were 3D printed with three different surfaces; the 
surface roughness was then measured. A total of 40 models were 
trained and validated, with the best results obtained using bag-
ging and a backpropagation multi-layer perceptron. Raster angle 
and LH were identified as the most influential parameters on sur-
face quality. Hooda et al. employed a random forest ML model to 
predict the ideal placement angle in FDM based on product ge-
ometry [34]. Training data were created using different shapes 
and geometries, and significant features were selected using a 
correlation-based feature selection technique. The model's ef-
fectiveness was tested using K-fold cross-validation, achieving 
94.57% accuracy. Winson et al. investigated the 3D printing of 
PLA composites reinforced with 4.6 mm chopped carbon fiber 
(CF) using FDM [35]. As the CF content increased, properties 

such as tensile and flexural strength, hardness, and thermal con-
ductivity improved significantly compared with pure PLA. The 
performance exhibited a rise-fall-rise trend with CF addition, 
and Gaussian process modeling predicted the optimal CF con-
tent of 6.7 wt%, which was closely aligned with the experimental 
results. Charalampous et al. aimed to develop a new parameter 
selection method to improve the dimensional accuracy of FDM-
produced parts [36]. Using ML algorithms, the method predicts 
the dimensional deviations between the CAD models and the 
fabricated parts. Experiments conducted under various print-
ing conditions demonstrated the effectiveness of the regression 
models in suggesting print settings and correcting errors. This 
study presents the first ML-based regression models and correc-
tion strategies for assessing and improving FDM process qual-
ity. Ulkir used carbon black-filled ABS material for 3D printing 
using the FDM process [37]. Tensile tests were conducted to de-
termine the mechanical strength, whereas resistance tests were 
carried out to assess electrical conductivity. Factors affecting 
strength included ID and LH; infill pattern (IP); for electrical re-
sistance, significant factors were length, NT, and measurement 
temperature. The data were analyzed, and predictive models for 
tensile strength and electrical resistance were developed using 
Gaussian process regression and support vector machine algo-
rithms. Results revealed a linear relationship between electrical 
resistance and length, as well as the impact of manufacturing 
settings on mechanical strength. However, while these studies 
provide valuable insights, many focus on limited ML algorithms 
or specific mechanical properties, such as surface roughness or 
dimensional accuracy, without comprehensively exploring other 
key properties like tensile or flexural strength. Moreover, the in-
teraction effects of critical printing parameters, such as LH, ID, 
and NT, remain underexplored in the context of multi-property 
optimization. The potential research gap lies in the need for a 
broader analysis of ML algorithms across multiple mechanical 
properties and their ability to predict the combined effects of di-
verse printing parameters. While existing studies demonstrate 
the feasibility of ML in AM, the lack of a comprehensive evalua-
tion of multiple algorithms for simultaneous prediction of prop-
erties such as hardness, tensile strength, flexural strength, and 
surface roughness represents a critical gap. This study seeks to 
address this gap by employing 25 different ML algorithms to pre-
dict these properties and by analyzing the impact of key printing 
parameters using analysis of variance (ANOVA). The rationale 
behind this work is to provide a more holistic understanding of 
the predictive capabilities of ML in AM, establish recommenda-
tions for algorithm selection, and optimize printing processes to 
improve the quality and reliability of FDM-produced ABS parts. 
This approach builds upon existing literature while filling the 
identified research gap through a systematic and comprehensive 
evaluation.

This study aimed to predict the mechanical properties, such as 
hardness, flexural strength, tensile strength, and surface rough-
ness, of ABS samples produced using the FDM. Experiments 
were conducted by selecting the printing parameters of layer 
thickness, ID, and NT to achieve this goal. The effects of these 
parameters on the mechanical properties and roughness were 
statistically evaluated using ANOVA. Data obtained from the ex-
periments were modeled using 25 different ML algorithms, and 
the prediction performances of these algorithms were assessed 
based on the mean absolute error (MAE), root mean squared 
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error (RMSE), mean squared error (MSE), and R-squared (R2) 
values. The algorithms with the best prediction performance 
were identified, and optimization recommendations for the 3D 
printing process were provided considering these results.

2   |   Materials and Methods

2.1   |   AM Process

In this study, the fabrication of tensile and flexural test specimens 
was performed using the FDM method. This method is a widely 
used AM technique that enables the physical production of 3D 
models by heating and extruding thermoplastic materials through 
a nozzle layer by layer [38]. The printer used in the production 
process was a Creality K1C model (Figure 1c). This 3D printer is 
known for its high printing speed and precision. With a maximum 
printing speed of 600 mm/s and a melt extrusion rate of 32 mm3/s, 
this printer allows for the rapid and accurate production of com-
plex geometries. The NT of the printer can reach up to 300°C, and 
the build platform can be heated up to 100°C, providing a compat-
ible environment for a wide range of materials. In this study, the 
material used was ABS, selected for its high durability, hardness, 
and heat-resistance properties [39, 40].

The tensile test specimens were designed in accordance with 
the ASTM D638 standard (Figure  1a). This standard specifies 
the dimensions and geometric characteristics of specimens 
used in tensile tests. The specimens were modeled in 3D using 

SolidWorks software, and the models were exported in standard 
triangle language (STL) format. This format records the surface 
geometry by triangulating the model and aids in generating the 
layered structure necessary for 3D printing. The STL file was 
then transferred to the slicing software, and parameters such as 
LT, PS, and NT were defined. Following the slicing process, a G-
code file was generated, which controls the printer's movement 
paths and material flow. Using this G-code file, the 3D printer 
melted the ABS material at the specified temperature and pro-
duced the tensile test specimens' layer by layer in accordance 
with the ASTM D638 standard. The flexural test specimens 
were designed in accordance with the ASTM D790 standard 
(Figure  1b). This study also examines other mechanical prop-
erties, including hardness and surface roughness, using tensile 
test specimens. Twenty-seven test specimens were produced for 
each mechanical property according to experimental design. All 
samples were printed on the XY plane and loaded in the Z di-
rection. Based on the design of experiments approach, variable 
3D printing parameters and levels were determined. In addition, 
other parameters were kept constant during the production 
process. The constant 3D printing parameters are detailed in 
Table 1.

2.2   |   Measurement of Mechanical Properties

In the ML process, four mechanical properties were examined 
as output parameters: tensile strength, flexural strength, hard-
ness, and surface roughness. Mechanical measurements were 
conducted on the ABS material produced using FDM. The tensile 
strength refers to the maximum amount of stress a material can 
withstand without breaking under tension. Tensile tests were per-
formed on a 50-kN capacity AG-X Shimadzu device according to 
ASTM D638 standards at a pull speed of 1 mm/s. This device com-
plies with ISO 7500/1, ASTM E4, and DIN51221 standards and 
provides results with ± 0.1% accuracy. Flexural strength refers to 
the maximum stress a material can withstand when bending with-
out breaking. Flexural tests were conducted on a 50-kN capacity 
AGS-X Shimadzu device, following ASTM D790 standards. The 
three-point bending method was applied using a fixed diameter 
mandrel and supports. ABS samples were bent at a speed of 1 mm/s 
using the mandrel. Hardness refers to a material's resistance to an 
applied force on its surface, typically related to its resistance to 
scratching or permanent deformation. Hardness measurements 

FIGURE 1    |    The sample dimensions (mm) and FDM-based 3D printer. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1    |    The constant 3D printing parameters during AM.

Parameter Unit Value

Nozzle diameter mm 0.4

Table temperature °C 90

Number of contours integer 7

Raster width mm 0.40

Infill pattern — Grid

Printing speed mm/s 90

Wall thickness mm 3
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were taken with a TRONIC PD-801 Analog Shoremeter, which 
is capable of measuring on the Shore D scale. According to the 
ASTM standards, measurements were taken from five points on 
both the top and bottom surfaces of the samples. The average of 
these values with a 1 kg/cm2 (9.8 N) applied pressure on the surface 
was used to calculate the general hardness value. Surface rough-
ness defines microscopic irregularities or small-scale protrusions 
and depressions on the surface. Surface roughness measurements 
were completed using the Mitutoyo Surftest SJ-210 device with a 
sampling length of 2.5 mm and measurement speed of 0.75 mm/s. 
Five measurements were performed for each sample. These 
tests provided reliable results by ensuring repeatability through 
multiple-point measurements, which helped analyze the mechan-
ical and surface properties of the ABS material.

2.3   |   Design of the Experiment

In AM processes, the printing parameters significantly affect the 
mechanical properties of the final product components. In this 
study, the three most important parameters affecting the mechan-
ical properties were selected. These are LT, ID, and NT. LT refers 
to the height of each printed layer in the 3D printing and AM pro-
cesses [41]. ID is a ratio that determines how solid or empty the 
interior of an object will be in 3D printing [42]. NT indicates the 
temperature at which the molten material is heated before being 
applied to the print surface in 3D printers [43]. These parameters 
were used as input variables in the ML implementation. Three lev-
els were defined for each parameter. The other 3D printer param-
eters required for the manufacturing process were kept constant 
throughout the experimental stages. The input parameters and 
their level values for the ML algorithm are listed in Table 2.

Experimental combinations were created based on the identi-
fied input and output parameters. The present study includes 
three factors, each with three levels, resulting in 27 experimen-
tal runs. The data set prepared for the ML algorithm is presented 
in Table 3. Each output parameter in the proposed dataset rep-
resents an average of five repeated measurements for improved 
accuracy and reliability.

3   |   ML Methodology

3.1   |   Methods of Prediction

ML is the capability of a program to learn from new data and 
adapt without human intervention [44, 45]. An ML model an-
alyzes the relationship between process factors and outputs. In 
this study, regression strategies were employed to perform com-
putations aimed at predicting the output responses obtained 
through 3D printing, namely hardness, tensile strength, surface 
roughness, and flexural strength. ML methods are classified 
into five main groups: functional algorithms, lazy learning al-
gorithms, meta-learning algorithms, rule-based algorithms, and 
tree-based algorithms. Table 4 lists the full names of the 25 ML 
algorithms considered in this study.

The dataset created for the ML algorithms comprises three inputs 
and four outputs (Table 3). The datasets for the output parameters 
are stored in separate files. In this study, the Waikato environment 

for knowledge analysis (WEKA) software was used for the ML im-
plementation. WEKA is a Java-language ML tool for implement-
ing algorithms, data analysis, and data mining tasks  [46]. Once 
the dataset was loaded into WEKA, fundamental statistics, such 
as minimum and maximum values, mean, and standard devia-
tion, were computed. Subsequently, subsets of the data were tested 
using all applicable regression algorithms available in WEKA. The 
methodology for ML is illustrated in Figure 2. This diagram sum-
marizes the process of output prediction and accuracy evaluation 
using an ML-based regression method for 3D-printed materials. 
Initially, the input data and properties of the 3D-printed material 
are used as inputs for the model. These data are processed through 
the ML regression method to produce the predicted output. The 
results predicted by the model are then compared with actual ex-
perimental data to evaluate accuracy. This process enhances the 
predictive power and performance of the model.

3.2   |   Proposed ML Algorithm

In this study, an ML model was proposed to predict various me-
chanical properties (hardness, tensile strength, surface roughness, 
and flexural strength) using critical printing parameters (LT, ID, 
and NT) in the 3D printing process. The methodology adopted for 
the ML process is illustrated in Figure 3. Initially, the data were 
normalized between 0 and 1 to enhance classification efficiency. 
Normalization involves scaling all data values to a specific range, 
typically to minimize differences in scale among variables and im-
prove algorithm performance. Following normalization, the data 
selection phase was conducted, during which training and testing 
datasets were prepared. A 10-fold cross-validation technique was 
applied at this stage to ensure balanced separation between the 
training and test datasets, thereby enhancing the reliability and 
accuracy of the results. In this study, 75% of the data was allocated 
for training, while the remaining 25% was reserved for testing. 
Subsequently, ML algorithms were employed with 25 regression 
algorithms. A performance analysis was conducted to evaluate the 
effectiveness of the proposed algorithms, ensuring a comprehen-
sive comparison of their predictive capabilities.

3.3   |   Performance Evaluation Metrics

Performance analysis is the process used to evaluate the per-
formance of a model and its ability to generalize. This involves 
various metrics and methods to assess, compare, and optimize 
the outcomes obtained during the training and testing phases 
of the models. In this study, the evaluation metrics applied to 
the regression models include the MSE, RMSE, MAE, and R2. 
The MSE was calculated by taking the average of the squared 

TABLE 2    |    Input parameters and level values of the ML algorithm.

Parameter Symbol Units Level 1 Level 2 Level 3

Layer 
thickness

LT (μm) 100 150 200

Infill density ID % 50 75 100

Nozzle 
temperature

NT (°C) 220 230 240
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differences between the predicted and actual values. This cal-
culation emphasizes the magnitude of errors by squaring the 
differences, which penalizes larger errors more heavily. A lower 
MSE value indicates that the model's predictions are closer to 
the actual values, which indicates better performance. However, 
due to the squared units of the MSE, its interpretation can be 
challenging; therefore, the square root of the MSE (RMSE) is 
often used for easier interpretation and comparison.

The MAE is calculated by averaging the absolute differences be-
tween the predicted and actual values. After summing the abso-
lute differences, the total is divided by the number of data points 
to obtain the average error. Unlike MSE, MAE does not penal-
ize larger errors more heavily; each error contributes equally, 
regardless of its magnitude. Therefore, the MAE is particularly 
suitable in scenarios in which penalizing large errors is not de-
sirable. A lower MAE value indicates that the model's predic-
tions are closer to the actual values.

(1)MSE =
1

n

n∑

i=1

(
yi− ŷi

)2
(2)MAE =

1

N

N∑

i=1

||yi − ŷi
||

TABLE 3    |    Measured responses: Dataset for the experiments.

No

Input parameters Output parameters

Layer 
thickness 

(μm)
Infill 

density (%)

Nozzle 
temperature 

(°C) Hardness

Flexural 
strength 

(MPa)

Tensile 
strength 

(MPa)
Roughness 

(μm)

1 100 50 220 47.63 34.48 25.76 12.87

2 100 50 230 50.68 36.15 26.95 14.08

3 100 50 240 54.08 37.82 28.35 15.46

4 100 75 220 52.13 40.43 31.05 12.18

5 100 75 230 56.10 42.36 32.79 13.38

6 100 75 240 59.81 44.32 34.52 14.65

7 100 100 220 57.39 47.49 38.01 11.59

8 100 100 230 61.23 49.53 40.06 12.65

9 100 100 240 65.21 51.62 42.57 13.85

10 150 50 220 44.29 31.98 23.95 15.46

11 150 50 230 47.06 33.39 24.36 16.89

12 150 50 240 50.03 34.78 25.49 18.43

13 150 75 220 48.86 37.63 28.03 14.68

14 150 75 230 52.15 39.28 29.45 16.12

15 150 75 240 55.47 40.96 30.89 17.65

16 150 100 220 54.26 43.75 34.57 13.97

17 150 100 230 57.68 45.68 36.62 15.32

18 150 100 240 61.43 47.59 38.54 16.83

19 200 50 220 41.95 30.18 21.47 17.79

20 200 50 230 44.58 31.38 22.59 19.52

21 200 50 240 47.49 32.65 23.68 21.35

22 200 75 220 46.37 35.08 26.29 16.89

23 200 75 230 49.35 36.69 27.58 18.59

24 200 75 240 52.57 38.29 28.83 20.35

25 200 100 220 51.29 40.85 32.24 16.12

26 200 100 230 54.68 42.65 33.95 17.68

27 200 100 240 58.09 44.56 35.89 19.45
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The RMSE was computed as the square root of the mean of the 
squared differences between the predicted and actual values. 
This metric highlights the magnitude of errors by squaring the 
differences and subsequently takes the square root to ensure 
that the error units are consistent with the original data. A lower 
RMSE value indicates that the model's predictions are closer to 
the actual values, which reflects better model performance. The 
RMSE is intuitive and straightforward to interpret, making it a 
widely used measure for understanding the magnitude of pre-
diction errors.

The R2 coefficient, also known as the coefficient of determina-
tion, is a performance metric that indicates how well a model 
explains the variability of the dependent variable. R2 measures 
how accurately predicted values approximate actual values. It 

takes a value between 0 and 1, where values closer to 1 indicate 
that the model explains a larger portion of the variability in the 
dependent variable. An R2 value of 1 implies that the model per-
fectly explains all variability, whereas an R2 value of 0 indicates 
that the model fails to explain any variability.

4   |   Results and Discussion

4.1   |   ANOVA Results

In this study, ANOVA was applied to investigate the relationship 
between input printing parameters, such as LT, ID, and NT, and 
output parameters, such as hardness, flexural strength, tensile 
strength, and roughness. ANOVA is a statistical test used to un-
derstand the effects of independent variables on dependent vari-
ables. This analysis was used to evaluate the influence of each 
input parameter on the output parameters (Table 5). The F-test 
and p-value were examined. The F-test measures the contribu-
tion of each variable to the variance of the model and determines 
whether the effects of the input parameters are significant. A 
high F value indicates that the parameter has a significant im-
pact on the dependent variable. The p-value, on the other hand, 
is used to statistically assess this impact. Generally, if the p-
value is below 0.05, the parameter has a statistically significant 
effect on the output parameter. As a result of this analysis, the 
significant effects of input parameters on outcome variables 
were evaluated, and the relationships between these parameters 
were elucidated.

When examining the p-values, the selected printing param-
eters were highly significant in terms of their impact on the 
mechanical properties and surface roughness. However, due 
to differences in F-values, the contribution levels of these pa-
rameters substantially vary. The calculated contribution val-
ues for each parameter are presented in Table 6. For the Shore 
D hardness parameter, the most influential factor was ID, 
which contributed 55.56%. Similar results were observed for 
the flexural strength and tensile strength parameters, where 
the ID was again identified as the most impactful factor. In 
contrast, for the roughness parameter, the most significant 
factor was the LT, which contributed 70.89%, while the ID had 
the lowest impact.

Regression coefficients and effect signs derived from the 
ANOVA results were used to determine whether a factor 
has a positive (enhancing) or negative (diminishing) effect 
(Equations  (5–8)). The model aims to identify the main and 
interactional effects of printing parameters on mechani-
cal properties. In regression models, positive coefficients 
indicate that an increase in the associated model terms en-
hances the parameter, whereas negative coefficients suggest 
that an increase in these terms reduces the parameter. The 
model in Equations  (5–7) show that the positive coefficient 
values for ID and NT imply a gradual increase in hardness, 
flexural strength, and tensile strength from lower to higher 
levels. Conversely, because the LT parameter has a negative 
coefficient, its increase reduces the mechanical properties. In 

(3)RMSE =

√√√
√ 1

n

n∑

i=1

(
yi− ŷi

)2

(4)R2 = 1 −

∑�
yi− ŷi

�2

∑�
yi−y

�2

TABLE 4    |    Full forms of all algorithms.

Algorithm Full form

LR Linear regression model

GP Gaussian process

MLP Multi-layer perceptron

SLR Simple linear regression

SMOREG Sequential minimal optimization regression

IBK Instance-based K (K-Nearest neighbors)

KSTAR K* (instance-based learner)

LWL Locally weighted learning

AR Association rules

BAGGİNG Bootstrap aggregating

CVP Cross-validation predictor

MS Model selection

RC Ridge classifier

RFC Random forest classifier

RSS Random subspace

RBD Reduced error pruning decision tree

IMC Iterative model construction

DT Decision tree

M5R M5’ rules

ZeroR Zero rule

DS Decision stump

M5P M5’ model tree

RandomF Random forest

RandomT Random tree

RepTree Reduced error pruning tree
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Equation (8), it is observed that an increase in the LT parame-
ter results in higher surface roughness.

4.2   |   Error Performance Metrics Results

In this section, the prediction performances of various ML algo-
rithms on four different output parameters are compared using 
the MAE, MSE, and RMSE values (Table  7). MAE represents 
the average of the absolute differences between the predicted 
and actual values, while MSE squares the errors, penalizing 
larger errors more heavily. The RMSE is calculated by taking 
the square root of the MSE, thereby emphasizing the magnitude 
of the errors.

The algorithm with the lowest error rate was KSTAR for 
Shore D hardness prediction. This algorithm achieved the 
best performance, with both an MAE of 0.0066 and an RMSE 
of 0.0101, indicating highly accurate predictions for hardness. 
MLP (MAE: 0.1662, RMSE: 0.1991) and SMOREG (MAE: 
0.1572, RMSE: 0.2245) also produced successful results with 
low error rates. However, the cross-validation predictor (CVP), 
MS, and ZeroR algorithms performed the worst, with both the 
MAE and RMSE values exceeding 6, indicating poor predic-
tion accuracy.

In the flexural strength prediction, the best performances were 
obtained by the MLP and RSS algorithms. MLP (MAE: 0.1874, 
RMSE: 0.2202) and SMOREG (MAE: 0.1977, RMSE: 0.3013) 
demonstrated successful performance with low error values 
for flexural strength prediction. Although KSTAR provided 
excellent results for hardness prediction, it was less successful 
for flexural strength, with an RMSE value exceeding 1. Again, 

CVP, MS, and ZeroR demonstrated the worst performance, with 
RMSE values greater than 6.

The best results were again obtained by MLP (MAE: 0.3325, 
RMSE: 0.3977) and SLR (MAE: 0.3371, RMSE: 0.4165) algo-
rithms for tensile strength predictions. KSTAR, however, showed 
higher error rates in this category, with an RMSE of 1.3541, 
falling behind the other algorithms. CVP, MS, and ZeroR once 
again had the highest error rates, with CVP reaching an RMSE 
of 5.9294, indicating poor performance in tensile strength pre-
diction. The most successful roughness prediction algorithm was 
KSTAR (MAE: 0.013, RMSE: 0.0172), which exhibited very low 
error rates, indicating outstanding performance in roughness 
prediction. MLP (MAE: 0.046, RMSE: 0.059) also showed strong 
performance, with very low error values. In contrast, ZeroR, 
CVP, and MS demonstrated the worst performance, with RMSE 
values as high as 2.6115, indicating poor accuracy in roughness 
predictions. In conclusion, the MLP and KSTAR algorithms con-
sistently achieved successful results across multiple parameters 
with low MAE, MSE, and RMSE values. In contrast, algorithms 
like CVP, MS, and ZeroR generally exhibit high error rates and 
the lowest prediction performance. The best-performing algo-
rithms for each output are indicated in bold in Table  7. These 
results emphasize the significant impact of selecting an appro-
priate algorithm on model prediction accuracy.

The MAE and MSE values obtained from ML algorithms have 
been graphically presented for better representation. The first 
four graphs illustrate the MAE values (Figure  4a–d). In the 
hardness and roughness predictions, the MLP and KSTAR algo-
rithms demonstrated low error rates, whereas the CVP, ZeroR, 
and IMC algorithms exhibited the highest error rates. For the 
flexural and tensile strengths, MLP and SMOREG demonstrated 
successful performance with low error rates, whereas CVP and 
ZeroR demonstrated the worst performance with high error 
rates. The last four graphs depict the MSE values (Figure 4e–h). 
MLP and KSTAR algorithms emerged as successful algorithms 
with very low error rates across all parameters. CVP, MS, and 
ZeroR exhibit the worst performance, consistently showing high 
MSE values across all four parameters. The KSTAR algorithm 
achieved the best hardness predictions with an MAE of 0.0066 
and an MSE of 0.0001. Similarly, the roughness results were 
most accurately predicted using the KSTAR algorithm, with an 
MAE of 0.013 and an MSE of 0.0003. The best predictions for the 
flexural and tensile strengths were made by the MLP algorithm. 

(5)

Hardness= −29.95−0.064 LayerThickness+0.207Infill Density

+0.33NozzleTemperature

(6)
FlexuralStength= −9.4−0.05LayerThickness+0.24InfillDensity

+0.17NozzleTemperature

(7)

TensileStength= −14.8−0.05LayerThickness+0.24InfillDensity

+0.15NozzleTemperature

(8)

Roughness= −23.2+0.052LayerThickness−0.031InfillDensity

+0.147NozzleTemperature

FIGURE 2    |    Method of ML for 3D printed material. [Color figure can be viewed at wileyonlinelibrary.com]
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8 of 17 Journal of Applied Polymer Science, 2025

The MAE and MSE values for the flexural strength were 0.1874 
and 0.048, respectively, while those for the tensile strength were 
0.3325 and 0.158. These results indicate that MLP and KSTAR 
are the most successful algorithms for predicting mechanical 
properties and surface roughness, achieving the lowest error 
rates across these metrics, whereas simpler algorithms like 
ZeroR and CVP demonstrate poor predictive performance.

4.3   |   Coefficient of Determination Results

In this section, the performance of various ML algorithms for 
four criteria (hardness, flexural strength, tensile strength, and 
roughness) is compared using the coefficient of determination 
(R2) values. The results are presented in Table 8. The R2 values 
indicate the proportion of variance in the dependent variable 

FIGURE 3    |    The proposed machine learning flowchart.

TABLE 5    |    ANOVA results for input–output parameters.

Factors

Hardness Flexural strength Tensile strength Surface roughness

F p F p F p F p

Layer thickness 627.83 0.000 328.21 0.000 202.92 0.000 1337.73 0.000

Infill density 1626.68 0.000 1494.56 0.000 1079.05 0.000 125.17 0.000

Nozzle temperature 670.32 0.000 114.53 0.000 66.66 0.000 423.69 0.000

Degree of freedom 26 26 26 26

TABLE 6    |    Contribution values of ANOVA results.

Factors Hardness Flexural strength Tensile strength Surface r+oughness

Layer thickness 21.48% 16.94% 15.05% 70.89%

Infill density 55.56% 77.13% 80.02% 6.63%

Nozzle temperature 22.92% 5.91% 4.94% 22.47%
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explained by the model. An R2 value closer to 1 indicates a 
better-fitting model.

The hardness values indicate that the highest performance 
was achieved by the KSTAR algorithm (0.9997), followed 
closely by MLP, SMOREG, and M5P algorithms. These algo-
rithms are highly successful in Shore D hardness prediction. 
On the other hand, the performance of algorithms such as 
IBK, ZeroR, and MS was considerably low, as their R2 values 
were below 0.5. For flexural strength, the most successful al-
gorithm was the MLP with an almost perfect result (0.9999). 
Other algorithms like M5R and SMOREG, also exhibit very 
high performance. However, the performance of algorithms 
such as IMC and ZeroR, on this metric is quite poor. In terms 
of tensile strength, MLP again delivers the best result, while 
the KSTAR, M5P, and RBD algorithms also demonstrate 
similarly high tensile strength. In contrast, LWL, CVP, and 

ZeroR yield relatively low results for this metric. Regarding 
roughness, the KSTAR (0.9999) and MLP (0.9940) algorithms 
were the best. The LR, SMOREG, and M5P algorithms also 
performed well on this metric. However, the performance of 
algorithms like ZeroR, LWL, and IMC is subpar.

MLP, SMOREG, M5P, and KSTAR perform exceptionally well 
across all four metrics, while ZeroR, IMC, and LWL demon-
strate low performance on some metrics. When comparing the 
results of MAE, MSE, and RMSE with the R2, the most success-
ful prediction algorithms remain consistent. This consistency 
indicates the success of the modeling and prediction processes. 
The results suggest that more complex models generally yield 
better results in regression problems, although simpler models 
may still be adequate in certain cases. The regression graphs of 
the algorithms that successfully predicted the output parame-
ters are presented in Figure 5. Although KSTAR was successful 

TABLE 7    |    MAE, MSE, and RMSE of all algorithms.

Algorithms Hardness Flexural strength Tensile strength Roughness

MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

LR 0.2346 0.088 0.2982 0.2909 0.125 0.3543 0.3744 0.211 0.4594 0.162 0.0368 0.1919

GP 1.8954 5.179 2.2759 1.7489 4.666 2.1602 1.8395 4.822 2.196 0.813 0.9577 0.9786

MLP 0.1662 0.039 0.1991 0.1874 0.048 0.2202 0.3325 0.158 0.3977 0.046 0.0035 0.059

SLR 1.3512 2.509 1.584 0.3454 0.181 0.4264 0.3371 0.173 0.4165 1.167 1.9063 1.3807

SMOREG 0.1572 0.050 0.2245 0.1977 0.090 0.3013 0.3392 0.202 0.4497 0.141 0.0344 0.1854

IBK 3.2633 10.82 3.2899 1.7033 2.967 1.7225 1.4948 2.463 1.5696 1.452 2.1583 1.4691

KSTAR 0.0066 0.0001 0.0101 0.9315 1.345 1.1621 1.041 1.833 1.3541 0.013 0.0003 0.0172

LWL 3.0243 11.939 3.4553 2.5271 8.999 2.9999 2.4408 8.502 2.9159 1.463 3.0026 1.7328

AR 2.3682 0.6381 0.7988 1.6927 4.927 2.2197 1.8009 4.113 2.0282 0.670 7.221 2.6872

BAGGİNG 2.4192 8.0236 2.8326 1.3807 3.664 1.9144 1.3335 3.455 1.859 1.213 2.2819 1.5106

CVP 5.0443 36.709 6.0588 5.1689 36.99 6.0825 5.0788 35.15 5.9294 2.204 6.8199 2.6115

MS 4.7031 36.709 6.0588 5.1689 36.99 6.0828 5.0788 35.15 5.9294 2.204 6.8199 2.6115

RC 1.9232 5.1475 2.2688 1.2042 2.068 1.4381 1.1517 1.808 1.3448 1.391 2.5751 1.6047

RFC 3.3833 11.688 3.4188 2.4733 8.768 2.9611 2.2015 7.503 2.7392 1.498 2.4264 1.5577

RSS 1.1265 2.0076 1.4169 0.4636 0.515 0.7071 0.6299 0.766 0.8755 1.096 1.7022 1.3047

RBD 0.8412 1.1597 1.0769 0.5518 0.444 0.6668 0.7218 0.730 0.8549 0.661 0.7211 0.8492

IMC 5.0443 36.709 6.0588 5.1689 36.99 6.082 5.0788 35.15 5.9294 2.204 6.8199 2.6115

DT 2.2122 7.0671 2.6584 1.5895 3.962 1.9905 1.477 3.320 1.8222 0.809 0.9716 0.9857

M5R 0.3489 0.1982 0.4452 0.2836 0.134 0.3664 0.3656 0.209 0.4582 0.365 0.2657 0.5155

ZeroR 5.0443 36.709 6.0588 5.1689 36.99 6.082 5.0788 35.15 5.9294 2.204 6.8199 2.6115

DS 3.6173 18.630 4.3163 2.6411 10.295 3.2087 2.7295 10.70 3.2724 1.793 4.4192 2.1022

M5P 0.3489 0.1982 0.4452 0.2836 0.1342 0.3664 0.3539 0.195 0.4423 0.372 0.2674 0.5171

RandomF 1.8989 5.0922 2.2566 0.8232 1.281 1.1318 0.8737 1.455 1.2066 1.168 1.9864 1.4094

RandomT 3.0324 11.337 3.3671 1.9256 5.790 2.4064 1.8778 4.766 2.1833 1.364 2.5132 1.5853

RepTree 3.0506 12.022 3.4674 1.9009 5.349 2.3129 2.3121 7.046 2.6546 1.392 2.7569 1.6604

Note: Bold values ​​represent the algorithms with the lowest error values ​​for each output parameter.
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10 of 17 Journal of Applied Polymer Science, 2025

in predicting hardness and surface roughness, MLP performed 
best for the flexural and tensile strength parameters. The re-
gression graph is a critical tool for evaluating the accuracy and 

explaining the variability of prediction models. These graphs 
help analyze model performance by visualizing how closely pre-
dicted values align with actual values.

FIGURE 4    |    MAE and MSE for predicting mechanical properties and surface roughness. [Color figure can be viewed at wileyonlinelibrary.com]
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In each graph, the red line represents the ideal scenario (where 
predicted values perfectly match the actual values), and the blue 
dots represent the relationship between actual and predicted val-
ues. The R2 values displayed in the graphs indicate how well the 
models perform, with an R2 value close to 1 indicating a highly 
successful model. Figure  5a shows hardness predictions made 
using the KSTAR algorithm. The R2 value is 0.9997726, indi-
cating an almost perfect fit. The blue dots are distributed very 
closely around the red line, indicating that the predicted val-
ues are nearly equal to the actual values. This suggests that the 
KSTAR algorithm accurately predicted the Shore D hardness 
parameter. The MLP algorithm is used to predict the flexural 
strength (Figure  5b). The R2 value is 0.999925, demonstrating 
that the algorithm achieved almost flawless performance. The 
blue dots are aligned very closely and parallel to the red line. This 
confirms that the MLP algorithm is highly effective in predict-
ing flexural strength. Figure  5c shows the performance of the 
MLP algorithm in predicting the tensile strength. The R2 value 
is 0.999755, again indicating an almost perfect fit. The blue dots 

are distributed very close to the red line in a well-aligned pat-
tern. This demonstrates the MLP algorithm's excellent predictive 
ability for this metric. Finally, surface roughness predictions are 
presented in Figure 5d using the KSTAR algorithm, with an R2 
value of 0.999934. This high value highlights the model's excep-
tional performance. The blue dots are once again very close to 
the red line, demonstrating that the model predictions are al-
most identical to the actual roughness values. Thus, the KSTAR 
algorithm is also highly effective in predicting roughness. The 
regression graphs in Figure 5 demonstrate the impressive predic-
tive power of both the KSTAR and MLP algorithms across differ-
ent metrics. The near-perfect R2 values in all cases indicate that 
these models achieved a high degree of accuracy in predicting.

4.4   |   Predicted Versus Actual Results

The predicted vs. actual graph is a tool used to visualize the re-
lationship between the values predicted by a model or analysis 

TABLE 8    |    Coefficient of determination of all algorithms.

Algorithms Shore D strength Flexural strength Tensile strength Roughness

LR 0.992732 0.988632 0.979902 0.993922

GP 0.684201 0.776114 0.801835 0.716248

MLP 0.994895 0.999925 0.999755 0.994047

SLR 0.686539 0.973774 0.985206 0.716248

SMOREG 0.994895 0.993134 0.985206 0.994047

IBK 0.523452 0.776114 0.801835 0.673046

KSTAR 0.999772 0.907817 0.913194 0.999934

LWL 0.570775 0.776114 0.663841 0.562422

AR 0.601762 0.776114 0.801835 0.832858

BAGGİNG 0.601762 0.814997 0.801835 0.701704

CVP 0.570775 0.639338 0.454410 0.682568

MS 0.447010 0.671224 0.474410 0.698759

RC 0.624915 0.814997 0.801835 0.694707

RFC 0.570775 0.776114 0.688891 0.698762

RSS 0.701071 0.971881 0.957070 0.716248

RBD 0.784287 0.916231 0.926983 0.716248

IMC 0.624915 0.612395 0.494410 0.598714

DT 0.624915 0.776114 0.801835 0.716248

M5R 0.944006 0.993134 0.980013 0.851006

ZeroR 0.523452 0.473206 0.454410 0.468742

DS 0.570775 0.681084 0.653685 0.598761

M5P 0.932961 0.991436 0.984806 0.896323

RandomF 0.648300 0.907817 0.913194 0.716248

RandomT 0.570775 0.776114 0.688891 0.694707

RepTree 0.570775 0.776114 0.678980 0.687303
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method and the actual observed values. In each graph, red and 
blue points represent the predicted and actual values, respec-
tively. This type of graph is commonly used to evaluate model 
accuracy and performance. In this section, the graphs were 
created using 27 data points derived from the outputs of the 
best prediction methods. Figure 6 compares the predicted and 
actual values for Shore D hardness, flexural strength, tensile 
strength, and surface roughness. Figure 6a shows that the pre-
dicted Shore D hardness values are generally very close to the 
actual values, with minor deviations in some cases. However, 
the overall trend indicates that the model performs well at pre-
dicting hardness. Similarly, in Figure 6b, the flexural strength 
predictions align closely with the actual values, showing min-
imal discrepancies between the two. In Figure 6c, the tensile 
strength predictions demonstrate a high degree of proximity to 
the actual values, although minor deviations are observed in 
a few cases. For surface roughness, as depicted in Figure 6d, 
the predicted values exhibit strong agreement with the actual 
values, even in instances of small differences, maintaining 
the overall trend. These findings highlight the model's high 
predictive performance and its ability to provide accurate esti-
mates for various mechanical properties. Across all graphs, a 
general concordance between the predicted and actual values 
is evident. The red and blue points mostly overlap or are po-
sitioned in proximity. This indicates that the ML models per-
formed with high accuracy in predicting both the mechanical 

properties and surface roughness. Although minor deviations 
were observed in some experiments, the models can be consid-
ered successful in their overall predictions.

The varying performance of ML models in this study can be 
attributed to several factors related to the characteristics of 
the algorithms and the nature of the dataset. First, certain 
algorithms, such as ZeroR and CVP, demonstrated poor per-
formance because they lacked the complexity required to cap-
ture the intricate relationships between the input parameters 
(LT, ID, and NT) and the output mechanical properties. ZeroR 
only predicts the value of the dependent variable without con-
sidering the input features, making it unsuitable for datasets 
with non-linear relationships. Similarly, simpler models like 
LWL and IMC struggled because of their limited ability to 
generalize from the provided data, especially in cases where 
interactions between parameters were significant. Conversely, 
more complex algorithms like MLP and KSTAR performed ex-
ceptionally well due to their ability to model non-linear rela-
tionships and capture subtle patterns in the data. Algorithms 
like MLP, which use neural networks, excel in handling multi-
dimensional datasets and can adapt to the inherent variabil-
ity in mechanical properties. Algorithms such as IBK and 
RandomT, which rely on instance-based or random tree ap-
proaches, may have underperformed due to their sensitivity to 
the small size of the dataset. These models tend to overfit when 

FIGURE 5    |    Regression graphs of the most successful machine learning algorithms. [Color figure can be viewed at wileyonlinelibrary.com]
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the dataset is limited, leading to reduced prediction accuracy 
on unseen data. In addition, the quality of results is influenced 
by the specific design and assumptions of each algorithm. 
Tree-based models like RF and RepTree are effective in han-
dling non-linear data but may face limitations in extrapolating 
beyond the range of the training data. Similarly, methods like 
SMOREG, while generally effective, may struggle with data-
sets where the variance in certain output variables is relatively 
small, as seen in surface roughness predictions.

An important observation from this study is that different al-
gorithms excel in predicting different mechanical properties. 
As an illustration, KSTAR excelled in hardness and surface 
roughness predictions, whereas MLP proved to be more effec-
tive in forecasting tensile and flexural strength. This variation 
underscores the fact that no single algorithm is universally op-
timal for all types of data or target variables. The differences 
can be attributed to the nature of the parameters being ana-
lyzed and the inherent strengths of the algorithms. For exam-
ple, KSTAR, being an instance-based algorithm, is well suited 
for capturing localized patterns in the data, making it effec-
tive for surface roughness and hardness, which are highly 
sensitive to specific parameter interactions. In contrast, MLP's 
neural network architecture enables it to model complex, non-
linear relationships across the entire dataset, which explains 

its superior performance for tensile and flexural strength. 
This study highlights the need for a systematic approach to 
selecting algorithms that are best suited for specific datasets 
and prediction tasks. Although the results offer valuable in-
sights into the performance of different ML models, practical 
application in real-world scenarios requires a method for de-
termining the most appropriate algorithm in advance. Future 
study could focus on developing a meta-learning approach 
that examines dataset characteristics, such as feature distribu-
tions, dimensionality, and the degree of nonlinearity, to pre-
dict the most suitable algorithm for a given task. For instance, 
analyzing the variance, correlation structure, or complexity 
of the input–output relationships could provide a basis for 
automated model selection. Such a framework would signifi-
cantly enhance the utility of ML in real-world applications, 
enabling users to select the best algorithm without the need 
for extensive trial-and-error experimentation. Furthermore, 
understanding why certain algorithms perform better for 
specific parameters requires a deeper investigation into the 
interaction between parameter characteristics and algorithm 
architecture. Surface roughness and hardness may be better 
predicted by algorithms that focus on localized relationships, 
while tensile and flexural strength might benefit from mod-
els capable of capturing global patterns across the dataset. 
Exploring such relationships in future studies could provide 

FIGURE 6    |    Predicted mechanical properties and surface roughness versus actual values. [Color figure can be viewed at wileyonlinelibrary.com]
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valuable guidelines for both selecting and designing ML mod-
els tailored to specific FDM applications.

In summary, the differences in algorithm performance can 
be justified by the balance between model complexity, dataset 
size, and the ability to capture non-linear or interaction effects. 
Although some models are inherently better suited for capturing 
complex relationships, others are limited by their simplicity or 
sensitivity to dataset characteristics. These findings highlight 
the importance of selecting appropriate ML models based on 
both the nature of the data and the desired prediction accuracy. 
In addition, the development of a systematic framework for algo-
rithm selection based on dataset characteristics and parameter-
specific requirements would be a valuable direction for future 
research, further enhancing the practical applicability of ML in 
FDM processes.

4.5   |   Discussion

The findings of this study demonstrate the successful applica-
tion of ML algorithms in predicting the mechanical properties 
of FDM-produced ABS parts. The high accuracy achieved by the 
KSTAR algorithm in predicting Shore D hardness (R2 = 0.9997) 
and surface roughness (R2 = 0.9993), along with the MLP al-
gorithm's superior performance in predicting tensile strength 
(R2 = 0.9997) and flexural strength (R2 = 0.9999), validates the 
robustness of these approaches within the experimental do-
main established. Regarding the generalizability of these mod-
els, several important considerations emerge. While the models 
show exceptional performance within the specified parameter 
ranges (LT: 100–200 μm, ID: 50%–100%, NT: 220°C–240°C), 
their applicability to broader FDM operations requires careful 
examination. The models' predictive capabilities are inherently 
influenced by the specific material properties of ABS and the 
defined experimental conditions. However, the underlying prin-
ciples and methodologies can be adapted to similar FDM appli-
cations with appropriate modifications.

The transferability of these models to other FDM operations 
depends on several factors. First, the physical and chemical 
properties of the printing material significantly influence the 
mechanical properties. While these models might be directly 
applicable to ABS-based applications within similar parameter 
ranges, extending them to other materials (such as PLA, PETG, 
or composite materials) would require retraining with material-
specific data. Second, the printing parameters used in this study, 
while comprehensive, represent a subset of the possible FDM 
process parameters. Additional factors such as PS, bed tempera-
ture, raster angle, and environmental conditions could affect 
the mechanical properties in ways not captured by the current 
models. The ANOVA results provide valuable insights into the 
relative importance of different parameters, with ID showing 
the highest impact on mechanical properties (55.56%–80.02%) 
except for surface roughness. This understanding of parameter 
significance could be generalized to guide parameter selection in 
other FDM applications, even when using different materials or 
equipment. However, specific quantitative relationships might 
vary depending on the material and process conditions. The ML 
approaches demonstrated in this study offer a framework that 
could be adapted for other FDM applications. The success of the 

KSTAR and MLP algorithms suggests that these methods can 
effectively capture the complex relationships between printing 
parameters and mechanical properties. The methodology of 
using multiple algorithms and selecting the best-performing 
ones based on comprehensive error metrics (MAE, RMSE, MSE, 
R2) provides a robust approach that could be replicated for dif-
ferent FDM applications.

In addition to these findings, it is essential to discuss the practi-
cal applications of ML in FDM processes, as highlighted by this 
study. The developed ML models can be utilized in real-world 
manufacturing as optimization tools for determining printing 
parameter combinations that achieve specific mechanical prop-
erty requirements. For instance, in a production line, where a 
particular application demands minimum surface roughness or 
maximum tensile strength, these models could quickly identify 
the optimal parameter settings. This application would signifi-
cantly reduce the time and costs associated with trial-and-error 
experiments. One critical aspect not directly addressed in this 
study is the comparison between the use of ML techniques and 
the expertise of experienced operators. While experienced op-
erators can often determine effective global parameter settings 
based on their knowledge and intuition, ML provides an op-
portunity to systematically optimize these parameters, partic-
ularly in situations where new materials are being introduced 
or where the relationships between parameters and outcomes 
are highly complex. ML models, as demonstrated in this study, 
can provide a quantitative and repeatable framework for opti-
mization, reducing the dependency on individual expertise and 
minimizing the risk of human error. When working with novel 
materials with minimal existing data, refining ML models with 
targeted material-specific information can ensure efficient and 
precise parameter optimization. The choice of the algorithm in 
such scenarios would depend on the complexity of the material 
behavior and the desired mechanical outcomes, as discussed 
earlier. Moreover, this study primarily focuses on global pa-
rameter optimization, where the same parameter values are ap-
plied throughout the print. However, as highlighted in previous 
studies [47], local optimization—where parameters are varied 
dynamically during the printing process—can often result in 
superior outcomes, particularly for complex geometries or multi-
functional parts. Although local optimization was beyond the 
scope of this study, it represents a promising avenue for future 
research. The integration of ML models into real-time control 
systems could enable dynamic adjustments to parameters such 
as NT or ID in response to changing conditions during the print. 
Such an approach would leverage the predictive power of ML 
to achieve not only global but also localized optimization, fur-
ther enhancing the precision and efficiency of FDM processes. 
Another potential application lies in customized manufactur-
ing processes. For example, in the medical field, where person-
alized prosthetics or implants are produced, ML models could 
optimize printing parameters to meet specific mechanical and 
surface quality requirements, improving the efficiency and pre-
cision of such processes. Despite these promising applications, 
certain challenges must be addressed to ensure the successful 
industrial integration of these models. First, the models must be 
retrained with broader datasets to accommodate wider param-
eter ranges and different materials. Second, the development 
of hybrid models that combine physics-based understanding 
with ML could enhance predictive accuracy, especially across 
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varying operating conditions. Finally, user-friendly interfaces 
and compatibility with real-time data systems would be crucial 
for seamless industrial implementation.

In conclusion, while the models developed in this study show 
excellent predictive capability within the specified experimental 
domain, their generalization to other FDM operations requires 
careful consideration of material properties, process parameters, 
and operating conditions. The methodology and insights gained 
from this study provide a valuable foundation for developing 
similar predictive models for other FDM applications, but the 
direct application of the current models should be approached 
with appropriate validation and potential adaptation to specific 
use cases. In addition, exploring the integration of ML for local 
parameter optimization and dynamic control during the print-
ing process represents an important direction for future work. 
The high accuracy achieved suggests that ML approaches can 
effectively predict mechanical properties in FDM processes, po-
tentially reducing the need for extensive experimental testing 
and paving the way for practical industrial applications.

5   |   Conclusions

In this study, 25 different ML algorithms were used to pre-
dict the mechanical properties of ABS parts produced using 
the FDM method, and the effects of printing parameters (LT, 
ID, and NT) on the mechanical properties were analyzed. 
According to the ANOVA results, the ID had the greatest im-
pact on hardness (55.56%), tensile strength (80.02%), and flex-
ural strength (77.13%). In contrast, the LT was identified as 
the most influential parameter on the surface roughness, with 
a 70.89% effect. The performance of the ML algorithms was 
evaluated using various error metrics, including MAE, RMSE, 
MSE, and R2. For predicting hardness and surface roughness, 
the KSTAR algorithm achieved the best results, with MAE: 
0.006 and R2: 0.99 for hardness, and MAE: 0.009 and R2: 0.99 
for surface roughness. For the prediction of tensile and flex-
ural strength, the MLP algorithm showed the highest accu-
racy, with R2 > 0.99 for both properties. The regression graphs 
demonstrate the performance of the algorithms by comparing 
the predicted values with the experimental results. The regres-
sion graphs for hardness and surface roughness demonstrated 
that the KSTAR algorithm's predictions were highly consistent 
with the experimental values, showing a strong correlation. 
The KSTAR algorithm exhibited remarkable precision in hard-
ness prediction, as the predicted values were nearly identical to 
the actual data. A similar level of success was observed for the 
surface roughness prediction, where the predicted and actual 
values were very close. The regression graphs for tensile and 
flexural strength prediction highlight the superior performance 
of the MLP algorithm. The predicted values for both the tensile 
and flexural strengths closely aligned with the experimental 
results, showing a strong linear relationship. The R2 > 0.99 val-
ues indicated that the model could explain almost all the varia-
tion in the data, with the predicted results closely matching the 
experimental outcomes. In the regression graphs, the predicted 
and actual values were mostly aligned along a 45° line (y = x), 
further confirming the high accuracy of the model. This study 
demonstrated the effectiveness of ML algorithms in predicting 
the mechanical properties of ABS parts produced by FDM and 

provided recommendations for optimizing printing parame-
ters. The proper selection of parameters such as ID, LT, and 
NT plays a crucial role in improving the mechanical properties 
of printed parts. Future studies could explore similar analyses 
using different materials and production methods, as well as 
test the performance of ML algorithms on larger datasets.
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