Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Durgun, Yilmaz" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    An alternative perspective on pure-projectivity of modules
    (Springer International Publishing Ag, 2020) Alagoz, Yusuf; Durgun, Yilmaz
    The study of pure-projectivity is accessed from an alternative point of view. Given modules M and N, M is said to be N-pure-subprojective if for every pure epimorphism g : B -> N and homomorphism f : M -> N, there exists a homomorphism h : M -> B such that gh = f. For a module M, the pure-subprojectivity domain of M is defined to be the collection of all modules N such that M is N-pure-subprojective. We obtain characterizations for various types of rings and modules, including FP-injective and FP-projective modules, von Neumann regular rings and pure-semisimple rings in terms of pure-subprojectivity domains. As pure-subprojectivity domains clearly include all pure-projective modules, a reasonable opposite to pure-projectivity in this context is obtained by considering modules whose pure-subprojectivity domain consists of only pure-projective. We refer to these modules as psp-poor. Properties of pure-subprojectivity domains and of psp-poor modules are studied.
  • [ X ]
    Öğe
    On rings admitting nonzero homomorphisms between non-projective modules
    (Taylor & Francis Inc, 2023) Alagoz, Yusuf; Durgun, Yilmaz; Izci, Kemal
    In a recent paper, Turkoglu have studied the rings admitting nonzero homomorphisms between any two non-projective modules (property (T)). His work raises the following question: What are the rings with nonzero maps between non-projective right modules and singular simple modules? As a generalization of the property (T), we consider two families of rings: those rings with nonzero maps from any non-projective module to any singular simple module (property (T1)) and those rings with nonzero maps from any singular simple module to any non-projective module (property (T2)). Complete characterizations of both classes of rings are obtained and it is shown, in particular, that the rings satisfying property (T) are precisely those rings satisfying both properties (T1) and (T2). We show that R satisfies (T) if and only if R has a unique singular simple right R-module, and R is either two-sided Artinian hereditary serial or right completely coretractable. Furthermore, we prove that a commutative ring R has the property (T) if and only if there is a ring decomposition R approximately equal to AxB , where A is semisimple Artinian and B satisfies one of the following conditions: (1) B is a semi-Artinian max ring with unique singular simple right R-module. (2) B is an Artinian hereditary serial ring with unique singular simple right R-module.

| Siirt Üniversitesi | Kütüphane | Açık Bilim Politikası | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Siirt Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Siirt, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim